Technol Cancer Res Treat
October 2024
Objectives: Irreversible Electroporation (IRE) is a non-thermal minimally invasive cancer therapy used in the treatment of liver tumors. However, the therapy entails an electrical current flux which can be high enough to cause a noticeable temperature increase. Therefore, the analysis of the heat distribution is important: during any IRE treatment, the target area is intended to be treated with non-thermal effects, where existing thermal effects should not damage nearby sensitive structures.
View Article and Find Full Text PDFA model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver. The biophysical model uses a simplified formulation of heat deposition on the applicator and a heat sink related to vasculature to solve the bioheat equation.
View Article and Find Full Text PDFPurpose: Heat-induced destruction of cancer cells via microwave ablation (MWA) is emerging as a viable treatment of primary and metastatic liver cancer. Prediction of the impacted zone where cell death occurs, especially in the presence of vasculature, is challenging but may be achieved via biophysical modeling. To advance and characterize thermal MWA for focal cancer treatment, an in vivo method and experimental dataset were created for assessment of biophysical models designed to dynamically predict ablation zone parameters, given the delivery device, power, location, and proximity to vessels.
View Article and Find Full Text PDFPlant-based models can reduce the number of animal studies for electroporation research in medical cancer treatment modalities like irreversible electroporation. Magnetic resonance imaging (MRI) provides volumetric visualisation of electroporated animal or plant tissues; however, contrast behaviour is complex, depending on tissue and sequence parameters. This study numerically analysed contrast between electroporated and non-electroporated tissue at 1.
View Article and Find Full Text PDFA model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actualablation ground truth from a clinical data set in liver. The biophysical model uses a simplified formulation of heat depositionon the applicator and a heat sink related to vasculature to solve the bioheat equation.
View Article and Find Full Text PDFElectroporation (EP) is widely used in medicine, such as cancer treatment, in form of electrochemotherapy or irreversible electroporation (IRE). For EP device testing, living cells or tissue inside a living organism (including animals) are needed. Plant-based models seem to be a promising alternative to substitute animal models in research.
View Article and Find Full Text PDFBackground: Electroporation-based cancer treatments are minimally invasive, nonthermal interventional techniques that leverage cell permeabilization to ablate the target tumor. However, the amount of permeabilization is susceptible to the numerous uncertainties during treatment, such as patient-specific variations in the tissue, type of the tumor, and the resolution of imaging equipment. These uncertainties can reduce the extent of ablation in the tissue, thereby affecting the effectiveness of the treatment.
View Article and Find Full Text PDFRadio frequency ablation (RFA) has become a popular method for the minimally invasive treatment of liver cancer. However, the success rate of these treatments depends heavily on the amount of experience the clinician possesses. Mathematical modeling can help mitigate this problem by providing an indication of the treatment outcome.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The level of detail of typical numerical models of microwave tumor ablations poses a challenge to the development of generic, model based treatment planning tools aiming at real time performance. The present contribution describes a flexible and accurate approximation of the microwave heat absorption that aims at mitigating these issues.
View Article and Find Full Text PDFPurpose: Blood flow is known to add variability to hepatic radiofrequency ablation (RFA) treatment outcomes. However, few studies exist on its impact on temperature-controlled RFA. Hence, we investigate large-scale blood flow effects on temperature-controlled RFA in flow channel experiments and numerical simulations.
View Article and Find Full Text PDFPurpose: Computer simulations of hepatic radio-frequency ablation (RFA) were performed to: () determine the dependence of the vessel wall heat transfer coefficient on geometrical parameters; () study the conditions required for the occurrence of the directional effect of blood; and () classify blood vessels according to their effect on the thermal lesion while considering blood coagulation. The information thus obtained supports the development of a multi-scale bio-heat model tailored for more accurate prediction of hepatic RFA outcomes in the vicinity of blood vessels.
Materials And Methods: The simulation geometry consisted of healthy tissue, tumor tissue, a mono-polar RF-needle, and a single cylindrical blood vessel.