Publications by authors named "Marco Balucani"

In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation.

View Article and Find Full Text PDF

The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils' scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds' electric functionalization, aimed at accelerating the cellular processes.

View Article and Find Full Text PDF

Gyroscopes are one of the next killer applications for the MEMS (Micro-Electro-Mechanical-Systems) sensors industry. Many mature applications have already been developed and produced in limited volumes for the automotive, consumer, industrial, medical, and military markets. Plenty of high-volume applications, over 100 million per year, have been calling for low-cost gyroscopes.

View Article and Find Full Text PDF

Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes.

View Article and Find Full Text PDF

Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate.

View Article and Find Full Text PDF

The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures.

View Article and Find Full Text PDF