Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from T-cell progenitors. Although current treatments, including chemotherapy and glucocorticoids, have significantly improved survival, T-ALL remains a fatal disease and new treatment options are needed. Since more than 60% of T-ALL cases bear oncogenic NOTCH1 mutations, small molecule inhibitors of NOTCH1 signalling; γ-secretase inhibitors (GSI), are being actively investigated for the treatment of T-ALL.
View Article and Find Full Text PDFCancer cell-stromal cell crosstalk is orchestrated by a plethora of ligand-receptor interactions generating a tumor microenvironment (TME) which favors tumor growth. The high pro-angiogenic nature of the TME perpetuates the chaotic network of structurally immature, low pericyte-covered vessels characteristic of the tumor vasculature. We previously demonstrated that chloroquine (CQ) -a lysosomotropic agent used as first-generation autophagy blocker in clinical trials- induced tumor vessel normalization and reduced tumor hypoxia.
View Article and Find Full Text PDFIn mammalian cells, autophagy is the major pathway for the degradation and recycling of obsolete and potentially noxious cytoplasmic materials, including proteins, lipids, and whole organelles, through the lysosomes. Autophagy maintains cellular and tissue homeostasis and provides a mechanism to adapt to extracellular cues and metabolic stressors. Emerging evidence unravels a critical function of autophagy in endothelial cells (ECs), the major components of the blood vasculature, which delivers nutrients and oxygen to the parenchymal tissue.
View Article and Find Full Text PDFIt is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers.
View Article and Find Full Text PDFChloroquine (CQ) and hydroxychloroquine (HCQ) are well-known 4-aminoquinoline antimalarial agents. Scientific evidence also supports the use of CQ and HCQ in the treatment of cancer. Overall, preclinical studies support CQ and HCQ use in anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they are able to sensitise tumour cells to a variety of drugs, potentiating the therapeutic activity.
View Article and Find Full Text PDFAutophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion.
View Article and Find Full Text PDFFrom yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent.
View Article and Find Full Text PDFBackground And Purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors and hypoxia is a common feature of solid tumors. Both EGFR and hypoxia are associated with therapy resistance and poor treatment outcome. To survive hypoxia, cells adapt by activation of hypoxia responsive pathways and expression of hypoxia-induced plasma membrane proteins.
View Article and Find Full Text PDFBackground: (Pre)clinical studies indicate that autophagy inhibition increases response to anti-cancer therapies. Although promising, due to contradicting reports, it remains unclear if radiation therapy changes autophagy activity and if autophagy inhibition changes the cellular intrinsic radiosensitivity. Discrepancies may result from different assays and models through off-target effects and influencing other signaling routes.
View Article and Find Full Text PDFBackground And Purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors.
View Article and Find Full Text PDFBackground And Purpose: Tumor hypoxia is associated with therapy resistance and malignancy. Previously we demonstrated that activation of autophagy and the unfolded protein response (UPR) promote hypoxia tolerance. Here we explored the importance of ULK1 in hypoxia tolerance, autophagy induction and its prognostic value for recurrence after treatment.
View Article and Find Full Text PDFBackground And Purpose: Tumour hypoxia is an important limiting factor in the successful treatment of cancer. Adaptation to hypoxia includes inhibition of mTOR, causing scavenging of eukaryotic initiation factor 4E (eIF4E), the rate-limiting factor for cap-dependent translation. The aim of this study was to determine the effect of preventing mTOR-dependent translation inhibition on hypoxic cell survival and tumour sensitivity towards irradiation.
View Article and Find Full Text PDFBackground And Purpose: Human tumors are characterized by the presence of cells that experience periodic episodes of hypoxia followed by reoxygenation. These cells are exposed to reactive oxygen species (ROS) upon reoxygenation and require adaptation to this stress by lowering ROS production or enhancing ROS-clearance for their survival. We hypothesized that autophagy, a lysosomal degradation pathway, may be involved in reducing ROS during periodic hypoxia through removal of ROS producing species.
View Article and Find Full Text PDF