Publications by authors named "Marco Aquila"

The neuronal Ca-sensor guanylate cyclase-activating protein 3 (zGCAP3) is a major regulator of guanylate cyclase (GC) activity expressed in zebrafish cone cells. Here, the zGCAP3, or a monoclonal antibody directed against zGCAP3, was injected in the cone cytoplasm by employing the pressure-polished pipette technique. This technique allows to perform "real time" zGCAP3 (or of any other phototransduction protein) over-expression or knock-down, respectively, via the patch pipette.

View Article and Find Full Text PDF

Diseases such as the sick sinus and the Brugada syndrome are cardiac abnormalities, which can be caused by a number of genetic aberrances. Among them are mutations in HCN4, a gene, which encodes the hyperpolarization-activated, cyclic nucleotide-gated ion channel 4; this pacemaker channel is responsible for the spontaneous activity of the sinoatrial node. The present genetic screening of patients with suspected or diagnosed Brugada or sick sinus syndrome identified in 1 out of 62 samples the novel mutation V492F.

View Article and Find Full Text PDF

The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes.

View Article and Find Full Text PDF

The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-Jα photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light.

View Article and Find Full Text PDF

Whole-cell recording is the most widely used configuration of the patch recording technique, mainly because it allows to manipulate the intracellular environment while recording membrane current. However, the patch pipette tapered shank and the small tip opening give high access resistances and preclude efficient exchange between pipette solution and cell cytosol. Independently by the recording configuration, another problem of this technique is to gain consistently tight seals.

View Article and Find Full Text PDF

cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play a central role in the regulation of cardiac and neuronal firing rate, and these channels can be dually activated by membrane hyperpolarization and by binding of cyclic nucleotides. cAMP has been shown to directly bind HCN channels and modulate their activity. Despite this, while there are selective inhibitors that block the activation potential of the HCN channels, regulation by cAMP analogs has not been well investigated.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are evolutionarily conserved components of the innate immune defense system of many living organisms varying from prokaryotes to eukaryotes, including humans. Due to their broad-spectrum activity and low level of induced resistance, these short aminoacid sequences represent a novel class of potential antimicrobial agents. Besides the development of anti-bacterial drugs, AMPs constitute ideal molecular models for the design of molecules with wide-ranging nanomedical applications, such as anti-tumorigenic agents and pharmacological tools to cure channelopaties.

View Article and Find Full Text PDF

The Ca(2+) modulation of pore formation (and disaggregation) kinetics of a synthetic analog of alamethicin F50/5 ([l-Glu(OMe)(7,18,19)]), a potent antibiotic peptide, was investigated in situ and in vitro. The in situ experiments consisted in whole-cell recording from isolated retinal rod outer segments (OS), because once blocking the only OS endogenous conductance with saturating light, the current flows entirely through the (exogenous) channels formed by the peptide. The kinetics of current change induced by peptide application and removal (in ∼50ms) on the OS extracellular side was measured in the presence of divalent cations at different concentrations.

View Article and Find Full Text PDF

When performing whole-cell configuration recordings, it is important to minimize series resistance to reduce the time constant of charging the cell membrane capacitance and to reduce error in membrane potential control. To this end, an existing method was improved by widening the patch pipette shank through the calibrated combination of heat and air pressure. The heat was produced by passing current through a filament that was shaped appropriately to ensure a homogeneous heating of the pipette shank.

View Article and Find Full Text PDF

The pore forming properties of synthetic cecropin-melittin hybrid peptide (Acetyl-KWKLFKKIGAVLKVL-CONH(2); CM15) were investigated by using photoreceptor rod outer segments (OS) isolated from frog retinae obtained by using the whole-cell configuration of the patch-clamp technique. CM15 was applied (and removed) to (from) the OS in approximately 50 ms with a computer-controlled microperfusion system. Once the main OS endogenous conductance was blocked with light, the OS membrane resistance was >or=1 G Omega, allowing high resolution, low-noise recordings.

View Article and Find Full Text PDF