The inclusion of facial and bodily cues (clinical gestalt) in machine learning (ML) models improves the assessment of patients' health status, as shown in genetic syndromes and acute coronary syndrome. It is unknown if the inclusion of clinical gestalt improves ML-based classification of acutely ill patients. As in previous research in ML analysis of medical images, simulated or augmented data may be used to assess the usability of clinical gestalt.
View Article and Find Full Text PDFCritically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better characterization of patient clusters at high risk of mortality and kidney injury. We analysed prospectively collected data including co-morbidities, clinical examination, and laboratory parameters from a minimally-selected population of 743 patients admitted to the ICU of a Dutch hospital between 2015 and 2017.
View Article and Find Full Text PDFDespite having a similar post-operative complication profile, cardiac valve operations are associated with a higher mortality rate compared to coronary artery bypass grafting (CABG) operations. For long-term mortality, few predictors are known. In this study, we applied an ensemble machine learning (ML) algorithm to 88 routinely collected peri-operative variables to predict 5-year mortality after different types of cardiac operations.
View Article and Find Full Text PDFBackground: Hemodynamic assessment of critically ill patients is a challenging endeavor, and advanced monitoring techniques are often required to guide treatment choices. Given the technical complexity and occasional unavailability of these techniques, estimation of cardiac function based on clinical examination is valuable for critical care physicians to diagnose circulatory shock. Yet, the lack of knowledge on how to best conduct and teach the clinical examination to estimate cardiac function has reduced its accuracy to almost that of "flipping a coin.
View Article and Find Full Text PDFFish are able to sense water flow velocities relative to their body with their mechanoreceptive lateral line organ. This organ consists of an array of flow detectors distributed along the fish body. Using the excitation of these individual detectors, fish can determine the location of nearby moving objects.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2012
This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network connectivity patterns are used to decrease the number of learning parameters and to deal more effectively with the structural credit assignment problem, which is to change individual network weights based on the obtained feedback.
View Article and Find Full Text PDFIt has been suggested that independent bottom-up and top-down processes govern saccadic selection. However, recent findings are hard to explain in such terms. We hypothesized that differences in visual-processing time can explain these findings, and we tested this using search displays containing two deviating elements, one requiring a short processing time and one requiring a long processing time.
View Article and Find Full Text PDFWe investigated the role of crowding in saccadic selection during visual search. To guide eye movements, often information from the visual periphery is used. Crowding is known to deteriorate the quality of peripheral information.
View Article and Find Full Text PDFThis paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton.
View Article and Find Full Text PDFThe temporal evolution of nearshore sandbars (alongshore ridges of sand fringing coasts in water depths less than 10 m and of paramount importance for coastal safety) is commonly predicted using process-based models. These models are autoregressive and require offshore wave characteristics as input, properties that find their neural network equivalent in the NARX (Nonlinear AutoRegressive model with eXogenous input) architecture. Earlier literature results suggest that the evolution of sandbars depends nonlinearly on the wave forcing and that the sandbar position at a specific moment contains 'memory', that is, time-series of sandbar positions show dependencies spanning several days.
View Article and Find Full Text PDF