Publications by authors named "Marco A Arriaga"

The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, , as a small animal model that complements the mouse and monkey models.

View Article and Find Full Text PDF

The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.

View Article and Find Full Text PDF

The utilization of iron oxide nanoparticles (FeO NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of FeO NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer's glass transition temperature can result in the polymer's chain becoming more mobile and thus increasing drug diffusion out of the scaffold.

View Article and Find Full Text PDF

In recent years, the application of microRNAs (miRNAs) or anti-microRNAs (anti-miRNAs) that can induce expression of the runt-related transcription factor 2 (RUNX2), a master regulator of osteogenesis, has been investigated as a promising alternative bone tissue engineering strategy. In this review, biomaterial scaffold-based applications that have been used to deliver cells expressing miRNAs or anti-miRNAs that induce expression of RUNX2 for bone tissue engineering are discussed. An overview of the components of the scaffold-based therapies including the miRNAs/anti-miRNAs, cell types, gene delivery vectors, and scaffolds that have been applied are provided.

View Article and Find Full Text PDF

In this work, PLGA scaffolds with different architectures were fabricated to investigate the effects of surface area to volume ratio (SVR) (which resulted from the different architectures) on scaffold degradation characteristics and drug release kinetics with minocycline as the model drug. It was hypothesized that the thin strand scaffolds, which had the highest SVR, would degrade faster than the thick strand and globular scaffolds as the increase in surface area will allow more contact between water molecules and degradable ester groups in the polymer. However, it was found that globular scaffolds, which had the lowest SVR, resulted in the fastest degradation which demonstrated that the amount of degradation of the scaffolds does not only depend on the SVR but also on other factors such as the retention of acidic degradation byproducts in the scaffold and scaffold porosity.

View Article and Find Full Text PDF