Publications by authors named "Marco A Aceves-Fernandez"

The dataset provides data obtained with eye-tracking while 55 volunteers solved 3 distinct neuropsychological tests on a screen inside a closed room. Among the 55 volunteers, 22 were women and 33 were men, all with ages ranging between 9 and 50, and 5 of whom were diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) [1]. The eye-tracker used for the collection of the data was an EyeTribe, which has a sampling rate of 60 Hz and an average visual angle between 0.

View Article and Find Full Text PDF

This paper introduces a novel one-dimensional convolutional neural network that utilizes clinical data to accurately detect choledocholithiasis, where gallstones obstruct the common bile duct. Swift and precise detection of this condition is critical to preventing severe complications, such as biliary colic, jaundice, and pancreatitis. This cutting-edge model was rigorously compared with other machine learning methods commonly used in similar problems, such as logistic regression, linear discriminant analysis, and a state-of-the-art random forest, using a dataset derived from endoscopic retrograde cholangiopancreatography scans performed at Olive View-University of California, Los Angeles Medical Center.

View Article and Find Full Text PDF

The present work describes the training and subsequent implementation on an FPGA board of an LSTM neural network for the modeling and prediction of the exceedances of criteria pollutants such as nitrogen dioxide (NO), carbon monoxide (CO), and particulate matter (PM and PM). Understanding the behavior of pollutants and assessing air quality in specific geographical regions is crucial. Overexposure to these pollutants can cause harm to both natural ecosystems and living organisms, including humans.

View Article and Find Full Text PDF

Glaucoma is an eye disease that gradually deteriorates vision. Much research focuses on extracting information from the optic disc and optic cup, the structure used for measuring the cup-to-disc ratio. These structures are commonly segmented with deeplearning techniques, primarily using Encoder-Decoder models, which are hard to train and time-consuming.

View Article and Find Full Text PDF

Atmospheric pollution refers to the presence of substances in the air such as particulate matter (PM) which has a negative impact in population ́s health exposed to it. This makes it a topic of current interest. Since the Metropolitan Zone of the Valley of Mexico's geographic characteristics do not allow proper ventilation and due to its population's density a significant quantity of poor air quality events are registered.

View Article and Find Full Text PDF

Background And Objective: There are many work related with segmentation techniques, including nearest neighbor algorithm, fuzzy rules, morphological filters, image entropy, thresholding, machine learning, wavelet analysis, and so on. Such methods carry out the segmentation, but take a lot of processing time by modifying the content of the image or showing discern problems in homogeneous areas, and the segmentation technique is designed to work efficiently only with the techniques used. In this paper a method to segment mammograms in order to separate breast area from pectoral-muscle avoiding bright areas that produce noise and therefore reducing false-positives is presented.

View Article and Find Full Text PDF

An improved method which considers the use of Fourier and wavelet transform based analysis to infer and extract 3D information from an object by fringe projection on it is presented. This method requires a single image which contains a sinusoidal white light fringe pattern projected on it, and this pattern has a known spatial frequency and its information is used to avoid any discontinuities in the fringes with high frequency. Several computer simulations and experiments have been carried out to verify the analysis.

View Article and Find Full Text PDF