Publications by authors named "Marcio Simao"

Type I diabetes is a prominent human pathology with increasing incidence in the population; however, its cause is still unknown. This disease promotes detrimental effects on reproduction, such as lower sperm motility and DNA integrity. Hence, the investigation of the underlying mechanisms of this metabolic disturbance in reproduction and its transgenerational consequences is of the utmost importance.

View Article and Find Full Text PDF

Iron is fundamental for several biological functions, but when in excess can lead to the development of toxic events. Some tissues and cells are more susceptible than others, but systemic iron levels can be controlled by treating patients with iron-chelating molecules and phlebotomy. An early diagnostic can be decisive to limit the progression of musculoskeletal complications like osteoarthritis and osteoporosis because of iron toxicity.

View Article and Find Full Text PDF

Iron has a fundamental role in life and in its biochemical reactions but, when in excess, it can promote the formation of free radicals which can lead to cell death. Therefore, managing the levels of iron is essential to regulate the production of oxidative stress related to iron, and ferritins are one of the main protein families involved in this process. Ferritins are ≈480 kDa multimeric proteins composed by 24 subunits, each with 19-26 kDa, which can accumulate up to 4500 iron atoms.

View Article and Find Full Text PDF

Objective: While a role for vitamin K in maintaining joint tissue homeostasis has been proposed based on the presence of vitamin K dependent proteins in cartilage and bone, it is not clear if low vitamin K intake is causally linked to joint tissue degeneration. To address this gap, we manipulated vitamin K status in aging mice to test its effect on age-related changes in articular cartilage and sub-chondral bone.

Methods: Eleven-month old male C57BL6 mice were randomly assigned to a low vitamin K diet containing 120 mcg phylloquinone/kg diet (n = 32) or a control diet containing 1.

View Article and Find Full Text PDF

HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice.

View Article and Find Full Text PDF

Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet.

View Article and Find Full Text PDF

Objective: Arthropathy that mimics osteoarthritis (OA) and osteoporosis (OP) is considered a complication of hereditary hemochromatosis (HH). We have limited data comparing OA and OP prevalence among HH patients with different hemochromatosis type 1 (HFE) genotypes. We investigated the prevalence of OA and OP in patients with HH by C282Y homozygosity and compound heterozygosity (C282Y/H63D) genotype.

View Article and Find Full Text PDF

A series of artificial microcosms was used to test the effect of clam density on benthic iron biogeochemistry and, subsequently, if the response of clam Ruditapes decussatus to infection with Perkinsus olseni, a common opportunistic parasite known to be iron dependent, was correlated with the dynamics of iron sediment pore waters within the chambers. Three series of benthic microcosms were used in the experiment, comparing similar densities of clams (none, one, two, three, or four individuals/chamber) between a control set (no deliberate infection) and two parallel sets of clams that were deliberately infected with the parasite after 10 days of incubation. Fifteen chambers were used simultaneously and the experiment was conducted for 35 days.

View Article and Find Full Text PDF