Publications by authors named "Marcio F M Alves"

Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector.

View Article and Find Full Text PDF

Cathepsins L (catL) and B play an important role in tumor progression and have been considered promising therapeutic targets in the development of novel anticancer agents. Using a bioactivity-guided fractionation, a series of triterpenoids was identified as a new class of competitive inhibitors towards cathepsin L with affinity values in micromolar range. Among the 14 compounds evaluated, the most promising were 3-epiursolic acid (3), 3-(hydroxyimino)oleanolic acid (9), and 3-(hydroxyimino)masticadienoic acid (13) with IC50 values of 6.

View Article and Find Full Text PDF

Angiotensin-I converting enzyme (ACE) is a key regulator of blood pressure, electrolytes and fluid homeostasis through conversion of angiotensin I into angiotensin II. Recently, a genetic polymorphism of the ACE gene, which accounts for 47% of the variation of ACE activity in blood, has been advocated as a biomarker of athletic aptitude. Different methods of analysis and determination of ACE activity in plasma have been used in human and equine research without a consensus of a "gold standard" method.

View Article and Find Full Text PDF

A new series of organotelluranes were synthesized and investigated, and the structure-activity relationships in cysteine proteases inhibition were determined. It was possible to identify the relevance of structural components linked to the reactivity of these compounds as inhibitors. For example, dibromo-organotelluranes showed to be more reactive than dichloro-organotelluranes towards cysteine cathepsins V and S.

View Article and Find Full Text PDF

Plasminogen is a glycoprotein implicated in angiogenesis and fibrin clot degradation associated with the release of angiostatin and plasmin activation, respectively. We have recently reported that cathepsin V, but not cathepsins L, B, and K, can release angiostatin-like fragments from plasminogen. Here, we extended the investigation to cathepsin S which has been implicated in angiogenesis and tumor cell proliferation.

View Article and Find Full Text PDF

Cathepsin S is a lysosomal cysteine peptidase of the papain superfamily which is implicated in physiological and pathological states. The enzyme is highly expressed in antigen presenting cells and is thought to play an important role in the processing of the major histocompatibility complex (MHC) class II-associated invariant chain. In pathological processes, cathepsin S is associated with Alzheimer's disease, atherosclerosis and obesity and can be regarded as a potential target in related disorders.

View Article and Find Full Text PDF

The inhibition of human cysteine cathepsins B, L, S and K was evaluated by a set of hypervalent tellurium compounds (telluranes) comprising both organic and inorganic derivatives. All telluranes studied showed a time- and concentration-dependent irreversible inhibition of the cathepsins, and their second-order inactivation rate constants were determined. The organic derivatives were potent inhibitors of the cathepsins and clear specificities were detected, which were parallel to their known substrate specificities.

View Article and Find Full Text PDF

The solubility of peptides in aqueous buffers used for the enzyme assays is a common limitation for all peptide libraries. In principle, the more water-soluble peptides are, the more susceptible they will be to peptidase hydrolysis. We have demonstrated that this bias can be circumvented in a portion-mixing fluorescence resonance energy transfer (FRET) peptide library by introducing k (lysine in the D-form) in both termini of the peptides.

View Article and Find Full Text PDF

We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 microM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg).

View Article and Find Full Text PDF

Cathepsins V and L have high identity and few structural differences. In this paper, we reported a comparative study of the hydrolytic activities of recombinant human cathepsins V and L using fluorescence resonance energy transfer peptides derived from Abz-KLRSSKQ-EDDnp (Abz = ortho-aminobenzoic acid and EDDnp = N-(2,4-dinitrophenyl)ethylenediamine). Five series of peptides were synthesized to map the S3 to S2' subsites.

View Article and Find Full Text PDF

We have systematically examined the S3 to S3' subsite substrate specificity requirements of cathepsin K using internally quenched fluorescent peptides derived from the lead sequence Abz-KLRFSKQ-EDDnp [where Abz is o -aminobenzoic acid and EDDnp is N -(2,4-dinitrophenyl)ethylenediamine]. We assayed six series of peptides, in which each position except Gln was substituted with various natural amino acids. The results indicated that the S3-S1 subsite requirements are more restricted than those of S1'-S3'.

View Article and Find Full Text PDF