Publications by authors named "Marcio C Bajgelman"

Background: Bacillus Calmette-Guérin (BCG) injected during the COVID-19 convalescence period was safe and enhanced recovery from anosmia and dysgeusia in the acute phase.

Objectives: To report the long-term results of the BATTLE trial, BCG vaccine in adults with mild COVID-19.

Methods: Design: Double-blind, placebo-controlled, randomized (1:1) clinical trial.

View Article and Find Full Text PDF

Vaccines are critical cost-effective tools to control the COVID-19 pandemic. The heterologous prime-boost vaccination has been used by many countries to overcome supply issues, so the effectiveness and safety of this strategy need to be better clarified. This study aims to verify the effect of heterologous prime-boost COVID-19 vaccination on healthcare professionals from Dante Pazzanese Hospital in Brazil.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleocapsid (N) protein of coronaviruses is crucial for genome transcription and packaging, making it a prime focus for antiviral development.
  • A novel fluorescence polarization assay identified small molecules, notably L-chicoric acid (CA), that inhibit the N protein's binding to viral RNA.
  • CA was confirmed as a high-affinity ligand for the N protein and demonstrated effectiveness in reducing SARS-CoV-2 replication in cell cultures, highlighting potential new antiviral strategies.
View Article and Find Full Text PDF

Background: The Bacillus Calmette-Guérin (BCG) vaccine may confer cross-protection against viral diseases in adults. This study evaluated BCG vaccine cross-protection in adults with convalescent coronavirus disease 2019 (COVID-19).

Method: This was a multicenter, prospective, randomized, placebo-controlled, double-blind phase III study (ClinicalTrials.

View Article and Find Full Text PDF

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear.

View Article and Find Full Text PDF

Vaccination certainly is the best way to fight against the COVID-19 pandemic. In this study, the seroconversion effectiveness of two vaccines against severe acute respiratory syndrome coronavirus 2 was assessed in healthcare workers: virus-inactivated CoronaVac (CV, n = 303), and adenovirus-vectored Oxford-AstraZeneca (AZ, n = 447). The immunoglobulin G (IgG) antibodies anti-spike glycoprotein and anti-nucleocapsid protein were assessed by enzyme-linked immunosorbent assay at the time before vaccination (T1), before the second dose (T2), and 30 days after the second dose (T3).

View Article and Find Full Text PDF

Therapeutic strategies based on immunomodulation have improved cancer therapy. Most approaches target co-stimulatory pathways or the inhibition of immunosuppressive mechanisms, to enhance immune response and overcome the immune tolerance of tumors. Here, we propose a novel platform to deliver targeted immunomodulatory signaling, enhancing antitumor response.

View Article and Find Full Text PDF

Nescient helix-loop-helix 2 (NHLH2) is a hypothalamic transcription factor that controls the expression of prohormone convertase 1/3, therefore having an impact on the processing of proopiomelanocortin and thus on energy homeostasis. Studies have shown that KO of results in increased body mass, reduced physical activity, and hypogonadism. In humans, a polymorphism of the gene is associated with obesity; and in Prader-Willi syndrome, a condition characterized by obesity, hypogonadism and behavioral abnormalities, the expression of NHLH2 is reduced.

View Article and Find Full Text PDF

Serological testing is a powerful tool in epidemiological studies for understanding viral circulation and assessing the effectiveness of virus control measures, as is the case of SARS-CoV-2, the pathogenic agent of COVID-19. Immunoassays can quantitatively reveal the concentration of antiviral antibodies. The assessment of antiviral antibody titers may provide information on virus exposure, and changes in IgG levels are also indicative of a reduction in viral circulation.

View Article and Find Full Text PDF

The inhibition of immunosuppressive mechanisms may switch the balance between tolerance and surveillance, leading to an increase in antitumor activity. Regulatory T cells play an important role in the control of immunosuppression, exhibiting the unique property of inhibiting T cell proliferation. These cells migrate to tumor sites or may be generated at the tumor site itself from the conversion of lymphocytes exposed to tumor microenvironment signaling.

View Article and Find Full Text PDF

Preserving morphological features that are important for cell function and structure is a critical parameter for in vitro experiments with rat cardiomyocytes. Lentiviral vectors are commonly used as gene transfer tool because of its high flexibility, efficiency to deliver expression cassettes and versatility of transducing quiescent cells. The tropism of the recombinant viral particle can be determined depending on the virus envelope, which shows a specific binding to cell surface receptors on the target cell.

View Article and Find Full Text PDF

Immunotherapy explores several strategies to enhance the host immune system's ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti-programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte-associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control.

View Article and Find Full Text PDF

Genetically modified tumor cells harboring immunomodulators may be used as therapeutic vaccines to stimulate antitumor immunity. The therapeutic benefit of these tumor vaccines is extensively investigated and mechanisms by which they boost antitumor response may be further explored. Tumor cells are large secretors of extracellular vesicles (EVs).

View Article and Find Full Text PDF

Many types of cancers have a well-established dependence on glutamine metabolism to support survival and growth, a process linked to glutaminase 1 (GLS) isoforms. Conversely, GLS2 variants often have tumor-suppressing activity. Triple-negative (TN) breast cancer (testing negative for estrogen, progesterone, and Her2 receptors) has elevated GLS protein levels and reportedly depends on exogenous glutamine and GLS activity for survival.

View Article and Find Full Text PDF

The ability to respond to fluctuations of reactive oxygen species (ROS) within the cell is a central aspect of mammalian physiology. This dynamic process depends on the coordinated action of transcriptional factors to promote the expression of genes encoding for antioxidant enzymes. Here, we demonstrate that the transcriptional coregulators, PGC-1α and NCoR1, are essential mediators of mitochondrial redox homeostasis in skeletal muscle cells.

View Article and Find Full Text PDF

Surface functionalization of silica nanoparticles (SiONPs) has been considered as a promising strategy to develop target-specific nanostructures. However, finding a chemical functionalization that can be used as an active targeting moiety while preserving the nanoparticles colloidal stability in biological fluids is still challenging. We present here a dual surface modification strategy for SiONPs where a zwitterion (ZW) and a biologically active group (BAG) (amino, mercapto or carboxylic functionalities) are simultaneously grafted on the nanoparticles' surface.

View Article and Find Full Text PDF

Key Points: We report that the peroxisome proliferator-activated receptor (PPAR)γ coactivator 1-α (PGC-1α)/PPARβ axis is a crucial mediator of uncoupling protein 3 (UCP3) expression in skeletal muscle cells via the transactivativation of a distal PPAR response element at the Ucp3 gene promoter. This mechanism is activated during the myogenic process and by high concentrations of fatty acids independent of PGC-1α protein levels. Ucp3 is essential for PGC-1α-induced oxidative capacity and the adaptive mitochondrial response to fatty acid exposure.

View Article and Find Full Text PDF

Background: The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis.

View Article and Find Full Text PDF

Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity.

View Article and Find Full Text PDF

Immunotherapy has revolutionized the treatment of cancer. Since tumor cells exhibit low immunogenicity and can induce several mechanisms of tolerance, the use of monoclonal antibodies or other immunomodulators, targeting costimulation of T cells may mediate the inhibition of immunosuppressive mechanisms, favouring immune surveillance and enhancing the detection and elimination of tumor cells. We developed a new in vitro assay, based on flow cytometry, which allows exploring the therapeutic potential of tumor-derived immunomodulatory lineages, enhancing anti-tumor response.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of a nuclear receptor superfamily and acts as a ligand-dependent transcription factor, playing key roles in maintenance of adipose tissue and in regulation of glucose and lipid homeostasis. This receptor is the target of thiazolidinediones, a class of antidiabetic drugs, which improve insulin sensitization and regulate glycemia in type 2 diabetes. Despite the beneficial effects of drugs, such as rosiglitazone and pioglitazone, their use is associated with several side effects, including weight gain, heart failure, and liver disease, since these drugs induce full activation of the receptor.

View Article and Find Full Text PDF

Recent studies have demonstrated that combination of modulatory immune strategies may potentiate tumor cell elimination. Most strategies rely on the use of monoclonal antibodies that can block cell surface receptors to overcome tumor-induced immunosuppression or acting as costimulatory ligands to boost activation of T cells. In this study, we evaluate the use of combinations of genetically modified tumor-derived cell lines that harbor the costimulatory T cell ligands 4-1BB ligand, OX40L, and the cytokine GM-CSF.

View Article and Find Full Text PDF

The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain.

View Article and Find Full Text PDF

Epithelial mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties, generating metastases. Transforming growth factor beta (TGF-β) is associated with this malignancy by having the ability to induce EMT. Metformin, has been shown to inhibit EMT in breast cancer cells.

View Article and Find Full Text PDF

Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS.

View Article and Find Full Text PDF