GABA receptors present in extrasynaptic areas mediate tonic inhibition in hippocampal neurons regulating the performance of neural networks. In this study, we investigated the effect of NMDA-induced plasticity on tonic inhibition in somatostatin- and parvalbumin-containing interneurons. Using pharmacological methods and transgenic mice (SST-Cre/PV-Cre x Ai14), we induced the plasticity of GABAergic transmission in somatostatin- and parvalbumin-containing interneurons by a brief (3 min) application of NMDA.
View Article and Find Full Text PDFIt is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment.
View Article and Find Full Text PDFIt is known that besides synaptic inhibition, there is a persistent component of inhibitory drive mediated by tonic currents which is believed to mediate majority of the total inhibitory charge in hippocampal neurons. Tonic currents, depending on cell types, can be mediated by a variety of GABA receptor (GABAR) subtypes but in pyramidal neurons, α5-subunit containing receptors were found to be predominant. Importantly, α5-GABARs were implicated in both inhibitory and excitatory synaptic plasticity as well as in a variety of cognitive tasks.
View Article and Find Full Text PDF