High performance affinity reagents are essential tools to enable biologists to profile the cellular location and composition of macromolecular complexes undergoing dynamic reorganization. To support further development of such tools, we have assembled a high-throughput phage display pipeline to generate Fab-based affinity reagents that target different dynamic forms of a large macromolecular complex, using the Chromosomal Passenger Complex (CPC), as an example. The CPC is critical for the maintenance of chromosomal and cytoskeleton processes during cell division.
View Article and Find Full Text PDFNovel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody V domain library from which we identified a high-affinity V binder ab8. Bivalent V, V-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients.
View Article and Find Full Text PDFReversible, high-affinity immobilization tags are critical tools for myriad biological applications. However, inherent issues are associated with a number of the current methods of immobilization. Particularly, a critical element in phage display sorting is functional immobilization of target proteins.
View Article and Find Full Text PDFImmunoglobulin binding proteins (IBPs) are broadly used as reagents for the purification and detection of antibodies. Among the IBPs, the most widely used are Protein-A and Protein-G. The C2 domain of Protein-G from Streptococcus is a multi-specific protein domain; it possesses a high affinity (K(D) ~10 nM) for the Fc region of the IgG, but a much lower affinity (KD~low μM) for the constant domain of the antibody fragment (Fab), which limits some of its applications.
View Article and Find Full Text PDFBackground: Chronic inflammation and remodeling of the bronchial wall are basic hallmarks of asthma. It is known that mesenchymal cells in the lamina reticularis underlying the basement membrane of the thickened airway wall of asthmatics predominantly display the phenotype of myofibroblasts and express alpha-smooth muscle actin (alpha-SMA). Human bronchial fibroblasts (HBFs) transform in vitro into myofibroblasts under the influence of transforming growth factor (TGF-beta).
View Article and Find Full Text PDF