Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements.
View Article and Find Full Text PDFUsing a neural network to predict how green fluorescent proteins respond to genetic mutations illuminates properties that could help design new proteins.
View Article and Find Full Text PDFFor yeast cells, tolerance to high levels of ethanol is vital both in their natural environment and in industrially relevant conditions. We recently genotyped experimentally evolved yeast strains adapted to high levels of ethanol and identified mutations linked to ethanol tolerance. In this study, by integrating genomic sequencing data with quantitative proteomics profiles from six evolved strains (data set identifier PXD006631) and construction of protein interaction networks, we elucidate exactly how the genotype and phenotype are related at the molecular level.
View Article and Find Full Text PDFThe functional basis of genetic robustness, the ability of organisms to suppress the effects of mutations, remains incompletely understood. We exposed a set of 15 strains of Saccharomyces cerevisiae form diverse environments to increasing doses of the chemical mutagen EMS. The number of the resulting random mutations was similar for all tested strains.
View Article and Find Full Text PDFCellular aggregates observed during growth of Saccharomyces cerevisiae strains derived from various natural environments makes most laboratory techniques optimized for non-aggregating laboratory strains inappropriate. We describe a method to reduce the size and percentage of the aggregates. This is achieved by replacing the native allele of the AMN1 gene with an allele found in the W303 laboratory strain.
View Article and Find Full Text PDFCrosses between inbred but unrelated individuals often result in an increased fitness of the progeny. This phenomenon is known as heterosis and has been reported for wild and domesticated populations of plants and animals. Analysis of heterosis is often hindered by the fact that the genetic relatedness between analyzed organisms is only approximately known.
View Article and Find Full Text PDF