Publications by authors named "Marcin Mizianty"

Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed.

View Article and Find Full Text PDF

Motivation: Off-target interactions of a popular immunosuppressant Cyclosporine A (CSA) with several proteins besides its molecular target, cyclophilin A, are implicated in the activation of signaling pathways that lead to numerous side effects of this drug.

Results: Using structural human proteome and a novel algorithm for inverse ligand binding prediction, ILbind, we determined a comprehensive set of 100+ putative partners of CSA. We empirically show that predictive quality of ILbind is better compared with other available predictors for this compound.

View Article and Find Full Text PDF

Recent years witnessed increased interest in intrinsically disordered proteins and regions. These proteins and regions are abundant and possess unique structural features and a broad functional repertoire that complements ordered proteins. However, modern studies on the abundance and functions of intrinsically disordered proteins and regions are relatively limited in size and scope of their analysis.

View Article and Find Full Text PDF

The disruption of the energy or nutrient balance triggers endoplasmic reticulum (ER) stress, a process that mobilizes various strategies, collectively called the unfolded protein response (UPR), which reestablish homeostasis of the ER and cell. Activation of the UPR stress sensor IRE1α (inositol-requiring enzyme 1α) stimulates its endoribonuclease activity, leading to the generation of the mRNA encoding the transcription factor XBP1 (X-box binding protein 1), which regulates the transcription of genes encoding factors involved in controlling the quality and folding of proteins. We found that the activity of IRE1α was regulated by the ER oxidoreductase PDIA6 (protein disulfide isomerase A6) and the microRNA miR-322 in response to disruption of ER Ca2+ homeostasis.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are either entirely disordered or contain disordered regions in their native state. IDPs were found to be abundant across all kingdoms of life, particularly in eukaryotes, and are implicated in numerous cellular processes. Experimental annotation of disorder lags behind the rapidly growing sizes of the protein databases and thus computational methods are used to close this gap and to investigate the disorder.

View Article and Find Full Text PDF

Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions.

View Article and Find Full Text PDF

Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER).

View Article and Find Full Text PDF

Recent research in the protein intrinsic disorder was stimulated by the availability of accurate computational predictors. However, most of these methods are relatively slow, especially considering proteome-scale applications, and were shown to produce relatively large errors when estimating disorder at the protein- (in contrast to residue-) level, which is defined by the fraction/content of disordered residues. To this end, we propose a novel support vector Regression-based Accurate Predictor of Intrinsic Disorder (RAPID).

View Article and Find Full Text PDF

Cyclic proteins (CPs) have circular chains with a continuous cycle of peptide bonds. Their unique structural traits result in greater stability and resistance to degradation when compared to their acyclic counterparts. They are also promising targets for pharmaceutical/therapeutic applications.

View Article and Find Full Text PDF

The axis inhibition (Axin) scaffold protein colocalizes β-catenin, casein kinase Iα, and glycogen synthetase kinase 3β by their binding to Axin's long intrinsically disordered region, thereby yielding structured domains with flexible linkers. This complex leads to the phosphorylation of β-catenin, marking it for destruction. Fusing proteins with flexible linkers vastly accelerates chemical interactions between them by their colocalization.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are either entirely disordered or contain disordered regions in their native state. IDPs were found to be abundant in complex organisms and implicated in numerous cellular processes. Experimental annotation of disorder lags behind the rapidly growing sizes of the protein databases, and thus computational methods are used to close this gap and to investigate the disorder.

View Article and Find Full Text PDF

We present the Database of Disordered Protein Prediction (D(2)P(2)), available at http://d2p2.pro (including website source code). A battery of disorder predictors and their variants, VL-XT, VSL2b, PrDOS, PV2, Espritz and IUPred, were run on all protein sequences from 1765 complete proteomes (to be updated as more genomes are completed).

View Article and Find Full Text PDF

Inverse ligand binding prediction utilizes a few protein-ligand (drug) complexes to predict other secondary therapeutic and off-targets of a given drug molecule on a proteomic scale. We adapt two binding site predictors, FINDSITE and SMAP, to perform the inverse predictions and evaluate them on over 30 representative ligands. Use of just one complex allows the identification of other protein targets; the availability of additional complexes improves the results.

View Article and Find Full Text PDF

Objective: To compare the osteoclastogenic capacity of peripheral blood mononuclear cells (PBMCs) from patients with osteoarthritis (OA) to that of PBMCs from self-reported normal individuals.

Methods: PBMCs from 140 patients with OA and 45 healthy donors were assayed for CD14+ expression and induced to differentiate into osteoclasts over 3 weeks in vitro. We assessed the number of osteoclasts, their resorptive activity, osteoclast apoptosis, and expression of the following cytokine receptors: RANK, interleukin-1 receptor type I (IL-1RI), and IL-1RII.

View Article and Find Full Text PDF

Motivation: Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains.

View Article and Find Full Text PDF

Many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions are very common in nature, abundantly found in all organisms, where they carry out important biological functions. The functions of these proteins complement the functional repertoire of "normal" ordered proteins, and many protein functional classes are heavily dependent on intrinsic disorder.

View Article and Find Full Text PDF

Background: ATP is a ubiquitous nucleotide that provides energy for cellular activities, catalyzes chemical reactions, and is involved in cellular signalling. The knowledge of the ATP-protein interactions helps with annotation of protein functions and finds applications in drug design. The sequence to structure annotation gap motivates development of high-throughput sequence-based predictors of the ATP-binding residues.

View Article and Find Full Text PDF

Motivation: Nucleotides are multifunctional molecules that are essential for numerous biological processes. They serve as sources for chemical energy, participate in the cellular signaling and they are involved in the enzymatic reactions. The knowledge of the nucleotide-protein interactions helps with annotation of protein functions and finds applications in drug design.

View Article and Find Full Text PDF

Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder.

View Article and Find Full Text PDF

Relatively low success rates of X-ray crystallography, which is the most popular method for solving proteins structures, motivate development of novel methods that support selection of tractable protein targets. This aspect is particularly important in the context of the current structural genomics efforts that allow for a certain degree of flexibility in the target selection. We propose CRYSpred, a novel in-silico crystallization propensity predictor that uses a set of 15 novel features which utilize a broad range of inputs including charge, hydrophobicity, and amino acid composition derived from the protein chain, and the solvent accessibility and disorder predicted from the protein sequence.

View Article and Find Full Text PDF

Motivation: X-ray crystallography-based protein structure determination, which accounts for majority of solved structures, is characterized by relatively low success rates. One solution is to build tools which support selection of targets that are more likely to crystallize. Several in silico methods that predict propensity of diffraction-quality crystallization from protein chains were developed.

View Article and Find Full Text PDF

Background: Intrinsically disordered proteins play important roles in various cellular activities and their prevalence was implicated in a number of human diseases. The knowledge of the content of the intrinsic disorder in proteins is useful for a variety of studies including estimation of the abundance of disorder in protein families, classes, and complete proteomes, and for the analysis of disorder-related protein functions. The above investigations currently utilize the disorder content derived from the per-residue disorder predictions.

View Article and Find Full Text PDF

Protein function annotation and rational drug discovery rely on the knowledge of binding sites for small organic compounds, and yet the quality of existing binding site predictors was never systematically evaluated. We assess predictions of ten representative geometry-, energy-, threading-, and consensus-based methods on a new benchmark data set that considers apo and holo protein structures with multiple binding sites for biologically relevant ligands. Statistical tests show that threading-based Findsite outperforms other predictors when its templates have high similarity with the input protein.

View Article and Find Full Text PDF

Accurate identification of strand residues aids prediction and analysis of numerous structural and functional aspects of proteins. We propose a sequence-based predictor, BETArPRED, which improves prediction of strand residues and β-strand segments. BETArPRED uses a novel design that accepts strand residues predicted by SSpro and predicts the remaining positions utilizing a logistic regression classifier with nine custom-designed features.

View Article and Find Full Text PDF

Sequence-based prediction of protein secondary structure (SS) enjoys wide-spread and increasing use for the analysis and prediction of numerous structural and functional characteristics of proteins. The lack of a recent comprehensive and large-scale comparison of the numerous prediction methods results in an often arbitrary selection of a SS predictor. To address this void, we compare and analyze 12 popular, standalone and high-throughput predictors on a large set of 1975 proteins to provide in-depth, novel and practical insights.

View Article and Find Full Text PDF