Publications by authors named "Marcin Magierowski"

Gastric ulcers affect approx. 10% of population. Non-steroidal anti-inflammatory drugs (NSAIDs), including acetylsalicylic acid (ASA) predispose to or impair the physiologically complex healing of pre-existing ulcers.

View Article and Find Full Text PDF

Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) signaling and HS-prodrugs maintain redox balance in gastrointestinal (GI) tract. Predominant effect of any HS-donor is mitochondrial. Non-targeted HS-moieties were shown to decrease the non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastrotoxicity but in high doses.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) as a gaseous molecule prevents gastrointestinal (GI)-tract against various injuries. This study aimed to evaluate for the first time the detailed molecular mechanism of mitochondria-targeting HS-prodrugs, AP39 and RT01 in gastroprotection against ischemia/reperfusion (I/R)-induced lesions. Wistar rats exposed to I/R were pretreated i.

View Article and Find Full Text PDF

Purpose: Endoscopic intragastric balloon (IGB) placement is a minimally invasive treatment for morbid obesity that is sometimes used as a preparatory step before surgical intervention. This study was performed to analyze the changes in the stomach wall induced by IGB placement, with particular emphasis on pathomorphology, inflammatory markers, and tissue growth factors.

Material And Methods: In total, 30 patients with morbid obesity were prospectively analyzed.

View Article and Find Full Text PDF

Gastrointestinal (GI) tract cancers pose a significant pharmacological challenge for researchers in terms of the discovery of molecular agents and the development of targeted therapies. Although many ongoing clinical trials have brought new perspectives, there is still a lack of successful long-term treatment. Several novel pharmacological and molecular agents are being studied in the prevention and treatment of GI cancers.

View Article and Find Full Text PDF

Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process.

View Article and Find Full Text PDF

The molecular processes that predispose the development of Barrett's esophagus (BE) towards esophageal adenocarcinoma (EAC) induced by gastrointestinal reflux disease (GERD) are still under investigation. In this study, based on a scientific literature screening and an analysis of clinical datasets, we selected a panel of 20 genes covering BE- and EAC-specific molecular markers (, , ). Furthermore, we aimed to reflect these alterations within an experimental and translational in vitro model of BE to EAC progression.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS).

View Article and Find Full Text PDF

Obesity may be treated by bariatric procedures and is related to enterohormone release modulation. Nevertheless, a majority of commonly used surgical procedures have a significant impact on vagus nerve function by breaking the connections with its gastric branches. In the case of an intragastric balloon (BAL), this interaction is unclear.

View Article and Find Full Text PDF

Barrett's esophagus in gastrointestinal reflux patients constitutes a columnar epithelium with distal characteristics, prone to progress to esophageal adenocarcinoma. HOX genes are known mediators of position-dependent morphology. Here we show HOX collinearity in the adult gut while Barrett's esophagus shows high HOXA13 expression in stem cells and their progeny.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is an endogenously produced molecule with anti-inflammatory and cytoprotective properties. We aimed to investigate for the first time if a novel, esterase-sensitive HS-prodrug, BW-HS-101 with the ability to release HS in a controllable manner, prevents gastric mucosa against acetylsalicylic acid-induced gastropathy on microscopic and molecular levels. Wistar rats were pretreated intragastrically with vehicle, BW-HS-101 (0.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (HS) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity.

View Article and Find Full Text PDF

The transient receptor potential vanilloid channel 4 (TRPV4) is associated with the development of several pathologies, particularly gastric disorders. However, there are no studies associating this receptor with the pathophysiology of gastric erosions. The aim of this study was to investigate the role of TRPV4 in the development of ethanol-induced gastric damage in vivo.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs, including ketoprofen, induce adverse effects within the gastrointestinal (GI)-tract. Hydrogen sulfide (HS) is an antioxidative gaseous mediator contributing to GI-protection. We aimed to evaluate the GI safety of a novel HS-releasing derivative of ketoprofen (ATB-352) classic ketoprofen and the molecular mechanisms of their activity after chronic treatment in experimental animal models.

View Article and Find Full Text PDF

Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug.

View Article and Find Full Text PDF

Intestinal alkaline phosphatase (IAP) is an essential mucosal defense factor involved in the process of maintenance of gut homeostasis. We determined the effect of moderate exercise (voluntary wheel running) with or without treatment with IAP on the course of experimental murine 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis by assessing disease activity index (DAI), colonic blood flow (CBF), plasma myokine irisin levels and the colonic and adipose tissue expression of proinflammatory cytokines, markers of oxidative stress (SOD2, GPx) and adipokines in mice fed a standard diet (SD) or high-fat diet (HFD). Macroscopic and microscopic colitis in sedentary SD mice was accompanied by a significant decrease in CBF, and a significant increase in the colonic expression of tumor necrosis factor-alpha (TNF-α), IL-6, IL-1β and leptin mRNAs and decrease in the mRNA expression of adiponectin.

View Article and Find Full Text PDF

Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H, CO, NH, CH, NO, HS, and CO.

View Article and Find Full Text PDF

Barrett's esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to screen Gene Expression Omnibus 2R (GEO2R) databases to establish whether clinical BE molecular profile was comparable with animal and optimized human esophageal squamous cell lines-based in vitro models.

View Article and Find Full Text PDF

Exposure to acidic gastric content due to malfunction of lower esophageal sphincter leads to acute reflux esophagitis (RE) leading to disruption of esophageal epithelial cells. Carbon monoxide (CO) produced by heme oxygenase (HMOX) activity or released from its donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) was reported to protect gastric mucosa against acid-dependent non-steroidal anti-inflammatory drug-induced damage. Thus, we aimed to investigate if CO affects RE-induced esophageal epithelium lesions development.

View Article and Find Full Text PDF

Oxidative stress reflects an imbalance between oxidants and antioxidants in favor of the oxidants capable of evoking tissue damage. Like hydrogen sulfide (HS) and nitric oxide (NO), carbon monoxide (CO) is an endogenous gaseous mediator recently implicated in the physiology of the gastrointestinal (GI) tract. CO is produced in mammalian tissues as a byproduct of heme degradation catalyzed by the heme oxygenase (HO) enzymes.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD.

View Article and Find Full Text PDF

Endogenous gas transmitters, hydrogen sulfide (HS), carbon monoxide (CO) and nitric oxide (NO) are important signaling molecules known to exert multiple biological functions. In recent years, the role of HS, CO and NO in regulation of cardiovascular, neuronal and digestive systems physiology and pathophysiology has been emphasized. Possible link between these gaseous mediators and multiple diseases as well as potential therapeutic applications has attracted great attention from biomedical scientists working in many fields of biomedicine.

View Article and Find Full Text PDF

Cancer-associated RNF43 mutations lead to activation of β-catenin signaling through aberrantly increasing Wnt-receptor levels at the membrane. Importantly, inactivating RNF43 mutations have been suggested to render cancer cells sensitive to Wnt-based therapeutics. However, the extent to which RNF43 mutations lead to impaired regulation of Wnt/β-catenin signaling has been poorly investigated.

View Article and Find Full Text PDF