The predation-driven Mesozoic marine revolution (MMR) is believed to have induced a dramatic change in the bathymetric distribution of many shallow marine invertebrates since the late Mesozoic. For instance, stalked crinoids - isocrinids (Isocrinida) have undergone a striking decline in shallow-sea environments and today they are restricted to deep-sea settings (below 100 m depth). However, the timing and synchronicity of this shift are a matter of debate.
View Article and Find Full Text PDFThe main aim of this work was to use the iron-iron oxide nanochains (Fe NCs) as adsorbents of the carcinogenic cationic crystal violet (CV) and anionic Congo red (CR) dyes from water. The investigated adsorbent was prepared by a magnetic-field-induced reduction reaction, and it revealed a typical core-shell structure. It was composed of an iron core covered by a thin FeO shell (<4 nm).
View Article and Find Full Text PDFThe zerovalent iron (Fe) nanomaterials tend to be spontaneously oxidized in the presence of oxygen. This leads to the formation of interface composed of iron core and thin iron oxide shell. These structures are frequently observed with transmission electron microscope but, at the same time, it is hard to determine the precise structural and chemical composition of oxide shell.
View Article and Find Full Text PDFIn order to use the infrared (IR) radiation shielding materials, they should take a form of thin film coatings deposited on glass/polymer substrates or be used as fillers of glass/polymer. The first approach usually suffers from several technological problems. Therefore, the second strategy gains more and more attention.
View Article and Find Full Text PDFPreparation and detailed structural characterization of iron-nickel wire-like nanochains with FeNi, FeNi, and FeNi compositions are reported. The investigated nanomaterials were produced by the novel template-free magnetic-field-induced reduction reaction with NaBH as the reducing agent. It is demonstrated that this method leads to the formation of Fe-Ni nanochains composed of spherical nanoparticles with an average diameter of 50-70 nm and with a very high degree of atomic disorder manifested as the lack of clearly developed bcc and fcc phases, which are usually observed for nano- and polycrystalline Fe-Ni species.
View Article and Find Full Text PDFThermal treatment is a post-synthesis treatment that aims to improve the crystallinity and interrelated physical properties of as-prepared materials. This process may also cause some unwanted changes in materials like their oxidation or contamination. In this work, we present the post-synthesis annealing treatments of the amorphous FeCo ( = 0.
View Article and Find Full Text PDFA novel solution combustion synthesis of nanoscale spinel-structured CoO powder was proposed in this work. The obtained material was composed of loosely arranged nanoparticles whose average diameter was about 36 nm. The as-prepared cobalt oxide powder was also tested as the anode material for Li-ion batteries and revealed specific capacities of 1060 and 533 mAh·g after 100 cycles at charge-discharge current densities of 100 and 500 mA·g, respectively.
View Article and Find Full Text PDFAn improved method for the production of luminescent carbon nanoparticles is proposed in this work. The new method overcomes the disadvantages of commonly used approaches. It involves two-stage laser ablation in water and in aqueous solutions, where the first stage is the laser ablation of a graphite target and the second is the shredding of particles produced in the first step.
View Article and Find Full Text PDFIn this work we apply N ion irradiation on vertically aligned carbon nanotube (VACNT) arrays in order to increase the number of connections and joints in the CNT network. The ions energy was 50 keV and fluence 5 × 10 ions cm. The film was 160 μm thick.
View Article and Find Full Text PDFIron is the crucial element for living organisms and its deficiency is described as the most common nutritional disorder all over the world. Nowadays, more effective and safe iron supplementation strategies for both humans and animals become one of the most important challenges in the therapy of nutritional deficiencies. Our previous in vivo studies confirmed safety and biodegradability of in-house manufactured zinc oxide-based nanoparticles and their rapid distribution to majority of organs and tissues in the body.
View Article and Find Full Text PDFA lot of physical and chemical preparation methods of one-dimensional (1D) structures are known today. Most of them use highly advanced technology or quite complex chemical reagents. This results in their high costs and difficulties with their implementation to a large industrial scale.
View Article and Find Full Text PDFPurpose: Several in vivo applications of dissolution dynamic nuclear polarization (DNP) require rapid successive injections of hyperpolarized substrates. Here we present the design and performance of a custom-built multisample dissolution DNP setup for small animal research.
Methods: The DNP setup consists of a commercial wide-bore magnet charged to 3.
Purpose: To implement hyperpolarized magnetic resonance (MR) imaging in an animal model of ischemia-reperfusion and to assess in vivo the regional changes in pyruvate metabolism within the 1st hour and at 1 week after a brief episode of coronary occlusion and reperfusion.
Materials And Methods: All animal experiments were performed with adherence to the Swiss Animal Protection law and were approved by the regional veterinary office. A closed-chest rat model was implemented by using an inflatable balloon secured around the left coronary artery.
The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray diffractometry and Mössbauer spectrometry to determine their structures.
View Article and Find Full Text PDFPurpose: Fast dynamic imaging of hyperpolarized (13) C-labeled pyruvate and its downstream metabolites shows great potential for probing metabolic changes in the heart. Sequences that allow for fast encoding of the spectral and spatial information of the myocardial metabolism and optimal signal excitation are usually limited by gradient performance, especially at high magnetic fields. Here we propose a combination of a spectral-spatial multiband excitation and multiecho readout to overcome these limitations.
View Article and Find Full Text PDFHyperpolarized (13)C-labeled pyruvate is a promising tool to investigate cardiac metabolism. It has been shown that changes in substrate metabolism occur following the induction of ischemia. To investigate the metabolic changes that are confined to spatial regions, high spatiotemporal resolution is required.
View Article and Find Full Text PDFWe describe the design and initial performance results of a multi-sample dissolution dynamic-nuclear-polarization (DNP) polarizer based on a Helium-temperature NMR cryostat for use in a wide-bore NMR magnet with a room-temperature bore. The system is designed to accommodate up to six samples in a revolver-style sample changer that allows changing samples at liquid-Helium temperature and at pressures ranging from ambient pressure down to 1 mbar. The multi-sample setup is motivated by the desire to do repetitive in vivo measurements and to characterize the DNP process by investigating samples of different chemical composition.
View Article and Find Full Text PDFAlternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants.
View Article and Find Full Text PDFp53 has been at the centre of attention for drug design since the discovery of its growth-suppressive and pro-apoptotic activity. Herein we report the design and characterisation of a new class of isoquinolinone inhibitors of the MDM2-p53 interaction. Our identification of druglike and selective inhibitors of this protein-protein interaction included a straightforward in silico compound-selection process, a recently reported NMR spectroscopic approach for studying the MDM2-p53 interaction, and selectivity screening assays using cells with the same genetic background.
View Article and Find Full Text PDFThe oncoprotein Mdm2, and the recently intensely studied, homologues protein Mdmx, are principal negative regulators of the p53 tumor suppressor. The mechanisms by which they regulate the stability and activity of p53 are not fully established. We have determined the crystal structure of the N-terminal domain of Mdmx bound to a 15-residue p53 peptide.
View Article and Find Full Text PDFBromodomains represent an extensive family of evolutionarily conserved domains that are found in many chromatin-associated proteins such as histone acetyltransferases (HAT) and subunits of ATP-dependent chromatin-remodeling complexes. These domains are associated with acetylated lysine residues that bind both in vivo and in vitro; for example, they bind to the N-acetylated lysines of the histone tail of nucleosomes. In this report, we determined the structure of the bromodomain from human brahma-related gene 1 (BRG1) protein, a subunit of an ATP-dependent switching/sucrose nonfermenting (SWI/SNF) remodeling complex, and have also characterized its in vitro interaction with N-acetylated lysine peptides from histones.
View Article and Find Full Text PDFWe describe an NMR method that directly monitors the influence of ligands on protein-protein interactions. For a two-protein interaction complex, the size of one component should be small enough (less than ca. 15 kDa) to provide a good quality (15)N((13)C) HSQC spectrum after (15)N((13)C) labeling.
View Article and Find Full Text PDFThe retinoblastoma tumor suppressor protein (pRb) is a key negative regulator of cell proliferation that is frequently disregulated in human cancer. Many viral oncoproteins (for example, HPV E7 and E1A) are known to bind to the pRb pocket domain via a LXCXE binding motif. There are also some 20 cellular proteins that contain a LXCXE motif and have been reported to associate with the pocket domain of pRb.
View Article and Find Full Text PDF