Publications by authors named "Marcienne M Wright"

Nitro-fatty acid products of oxidative inflammatory reactions mediate anti-inflammatory cell signalling responses. LNO2 (nitrolinoleic acid) induces expression of HO-1 (haem oxygenase-1), an enzyme that catabolizes haem into products exhibiting potent anti-inflammatory properties. In the present manuscript, the molecular mechanisms underlying HO-1 induction by LNO2 were examined in HAEC (human aortic endothelial cells), HEK-293 (human embryonic kidney 293) cells, and in transcription factor-deficient MEF (mouse embryonic fibroblasts).

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1) catalyzes the conversion of heme into carbon monoxide (CO), iron, and biliverdin. In preliminary studies, we observed that the absence of HO-1 in aortic allograft recipients resulted in 100% mortality within 4 days due to arterial thrombosis. In contrast, recipients normally expressing HO-1 showed 100% graft patency and survival for more than 56 days.

View Article and Find Full Text PDF

In vivo and in vitro studies revealed that nitroalkenes serve as protective mediators in the lung by inducing the cytoprotective enzyme heme oxygenase-1 (HO-1). Nitrolinoleic acid (LNO2) increased HO-1 mRNA, protein, and activity in cultured pulmonary epithelial cells treated with 5 to 50 microM LNO2 and in lungs of rats injected intraperitoneally with 2.6 mg/kg LNO2 twice daily for 20 days.

View Article and Find Full Text PDF

Heme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.

View Article and Find Full Text PDF

Nitroalkenes are a class of cell signaling mediators generated by NO and fatty acid-dependent redox reactions. Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid (nitrolinoleic acid, LNO(2)) exhibit pluripotent antiinflammatory cell signaling properties. Heme oxygenase 1 (HO-1) is up-regulated as an adaptive response to inflammatory mediators and oxidative stress.

View Article and Find Full Text PDF

Bacterial lipopolysaccharide (LPS) causes acute lung injury (ALI) and contributes to inflammation in the acute respiratory distress syndrome (ARDS) and sepsis, making mechanisms of resistance to LPS critically important in clinical settings. The authors postulated that intratracheal administration of a plasmid (pcDNA3. 0-rTNFalpha) encoding rat tumor necrosis factor-alpha (TNF-alpha) would increase resistance of mice to LPS-induced ALI or mortality.

View Article and Find Full Text PDF

Lung epithelial cells produce increased reactive oxygen species (ROS) after hypoxia exposure, and they are more susceptible after hypoxia to injury by agents that generate superoxide [O2-; e.g., 2,3-dimethoxy-1,4-naphthoquinone (DMNQ)].

View Article and Find Full Text PDF

This study tested the hypothesis that hypoxia exposure predisposed lung epithelial cells to reactive oxygen species-(ROS) mediated cellular injury. Human lung carcinoma cells (ATCC line H441) having epithelial characteristics (including lamellar bodies, surfactant protein [SP]-A, and SP-B) were cultured in air (air/5% CO(2)) or hypoxia (< 1% O(2)/5% CO(2)) for 0 to 24 hours before imposition of oxidant stress. Cellular manganese superoxide dismutase (MnSOD) activity (units/mg protein) decreased significantly after 24 hours of hypoxia.

View Article and Find Full Text PDF