Objective: To demonstrate naturalistic motor control speed, coordinated grasp, and carryover from trained to novel objects by an individual with tetraplegia using a brain-computer interface (BCI)-controlled neuroprosthetic.
Design: Phase I trial for an intracortical BCI integrated with forearm functional electrical stimulation (FES). Data reported span postimplant days 137 to 1478.
Individuals with tetraplegia identify restoration of hand function as a critical, unmet need to regain their independence and improve quality of life. Brain-Computer Interface (BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need by reconnecting the brain with paralyzed limbs to restore function. In this study, we quantified performance of an intuitive, cortically-controlled, transcutaneous FES system on standardized object manipulation tasks from the Grasp and Release Test (GRT).
View Article and Find Full Text PDFNeuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement.
View Article and Find Full Text PDFObjective: Deficits in visual perception and working memory are commonly observed in neuropsychiatric disorders and have been investigated using functional MRI (fMRI). However, interpretation of differences in brain activation may be confounded with differences in task performance between groups. Differences in task difficulty across conditions may also pose interpretative issues in studies of visual processing in healthy subjects.
View Article and Find Full Text PDF