Due to the increasing incidence of cancer, the consumption of highly toxic oncological drugs is continuously growing. Given the current lack of efficient technologies to remove/treat these toxic drugs in wastewater treatment plants, the environmental quality is compromised, and aquatic organisms are at risk. To address this critical environmental burden, a new strategy based on supported ionic liquids (SILs) for the simultaneous removal of oncologic drugs and toxicity reduction of aqueous samples is here proposed.
View Article and Find Full Text PDFBackground And Purpose: Knowledge of the factors affecting pain intensity and pain sensitivity can inform treatment targets and strategies aimed at personalizing the intervention, conceivably increasing its positive impact on patients. Therefore, this study aimed to investigate the association between demographic factors (sex and age), body mass index (BMI), psychological factors (anxiety and depression, kinesiophobia and catastrophizing), self-reported physical activity, pain phenotype (symptoms of central sensitization, and nociceptive or neuropathic pain), history of COVID-19 and pain intensity and sensitivity in patients with chronic non-specific low back pain (LBP).
Methods: This was a cross-sectional secondary analysis with 83 participants with chronic non-specific LBP recruited from the community between August 2021 and April 2022.
Background: Evidence on the acute impact of high-intensity interval aerobic exercise on pain is scarce. This type of exercise might be perceived as increasing pain intensity and pain sensitivity negatively impacting adherence. More evidence on the acute effects of high-intensity interval aerobic exercise in individuals with low back pain (LBP) is needed.
View Article and Find Full Text PDFAnthropogenic impacts have affected the coastal environment and contributed to its contamination. Mercury (Hg) is widespread in nature and has been shown to be toxic in even the smallest amounts, negatively affecting not only the marine ecosystem but also the entire trophic chain due to its biomagnification. Mercury ranks third on the Agency for Toxic Substances and Diseases Registry (ATSDR) priority list and it is therefore imperative to develop more effective methods than those currently available to avoid the persistence of this contaminant in aquatic ecosystems.
View Article and Find Full Text PDFThe emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost.
View Article and Find Full Text PDFThe work describes the combination of granulated biomass fly ash (G) with Fenton process to enhance the removal of adsorbable organic halides (AOX) from pulp bleaching wastewater. At optimal operating conditions, wastewater's chemical and biochemical oxygen demand (COD and BOD, respectively) and colour were also quantified, and operating cost of treatment assessed. For the first time, raw pulp bleaching wastewater was used to granulate BFA, instead of water, reducing the water footprint of the treatment.
View Article and Find Full Text PDFIn this work, the performance of residual iron dust (RID) from metallurgic industry was assessed as Fenton catalyst for the treatment of real pulp bleaching wastewater. The focus was on the removal of recalcitrant pollutants AOX (adsorbable organic halides), by a novel, cleaner, and cost-effective circular solution based on a waste-derived catalyst. The behaviour of RID as iron source was firstly assessed by performing leaching tests at different RID:wastewater w/v ratios and contact time.
View Article and Find Full Text PDFL-asparaginase (ASNase) is an aminohydrolase currently used in the pharmaceutical and food industries. Enzyme immobilization is an exciting option for both applications, allowing for a more straightforward recovery and increased stability. High surface area and customizable porosity make carbon xerogels (CXs) promising materials for ASNase immobilization.
View Article and Find Full Text PDFNeonicotinoids are systemic insecticides commonly used for pest control in agriculture and veterinary applications. Due to their widespread use, neonicotinoid insecticides (neonics) are found in different environmental compartments, including water, soils, and biota, in which their high toxicity towards non-target organisms is a matter of great concern. Given their widespread use and high toxicity, the development of strategies to remove neonics, while avoiding further environmental contamination is of high priority.
View Article and Find Full Text PDFLiquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g.
View Article and Find Full Text PDFL-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse.
View Article and Find Full Text PDFBeer corresponds to a fermented alcoholic beverage composed of several components, including purine compounds. These molecules, when ingested by humans, can be catabolized into uric acid, contributing to uric acid's level increase in serum, which may lead to hyperuricemia and gout. To assure a proper management of this disease, physicians recommend restrictive dietary measures, particularly by avoiding the consumption of beer.
View Article and Find Full Text PDFHigh quality nucleic acids (with high integrity, purity, and biological activity) have become indispensable products of modern society, both in molecular diagnosis and to be used as biopharmaceuticals. As the current methods available for the extraction and purification of nucleic acids are laborious, time-consuming, and usually rely on the use of hazardous chemicals, there is an unmet need towards the development of more sustainable and cost-effective technologies for nucleic acids purification. Accordingly, this study addresses the preparation and evaluation of silica-based materials chemically modified with chloride-based ionic liquids (supported ionic liquids, SILs) as potential materials to effectively isolate RNAs.
View Article and Find Full Text PDFIonic liquids (ILs) have been applied in several fields in which enzymes and proteins play a noteworthy role, for instance in biorefinery, biotechnology, and pharmaceutical sciences, among others. Despite their use as solvents and co-solvents, their combination with materials for protein- and enzyme-based applications has raised significant attention in the past few years. Among them, significant advances were brought by supported ionic liquids (SILs), in which ILs are introduced to modify the surface and properties of materials, e.
View Article and Find Full Text PDFThe advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity.
View Article and Find Full Text PDFThe sustainable cellular delivery of the pleiotropic drug curcumin encounters drawbacks related to its fast autoxidation at the physiological pH, cytotoxicity of delivery vehicles and poor cellular uptake. A biomaterial compatible with curcumin and with the appropriate structure to allow the correct curcumin encapsulation considering its poor solubility in water, while maintaining its stability for a safe release was developed. In this work, the biomaterial developed started by the preparation of an oil-in-water nanoemulsion using with a cytocompatible copolymer (Pluronic F 127) coated with a positively charged protein (gelatin), designed as G-Cur-NE, to mitigate the cytotoxicity issue of curcumin.
View Article and Find Full Text PDFChester step test (CST) estimates the exercise capacity through a submaximal response, which can limit its application in the prescription of exercise. This study aimed to assess whether an adaptation of the CST (with a progressive profile) can have maximal response characteristics in young women and compare it to the incremental shuttle walk test (ISWT). Another aim was to determine its within-day test-retest reliability.
View Article and Find Full Text PDFThe enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading.
View Article and Find Full Text PDFSymmetrical poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) triblock copolymer with 82.5% PEG as the hydrophilic end blocks, and PPG as the hydrophobic middle block, was chosen to study the effect of ionic liquids (ILs) on the critical micellization temperature (CMT) of block copolymers in aqueous solution. In the present work, cholinium-based ILs were chosen to explore the effect of the anions on the copolymer CMT using fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η), FT-IR spectroscopy, nuclear magnetic resonance (NMR), and direct visualization of the various self-assembled nanostructures by scanning electron microscopy (SEM).
View Article and Find Full Text PDFHydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2009
Submicron particles of amorphous SiO(2) have been used to grow Ag(2)S nanophases at their surfaces. SEM and TEM analysis showed morphological well-defined nanocomposite particles consisting of Ag(2)S nanocrystals dispersed over the silica surfaces. These SiO(2)/Ag(2)S nanocomposites were investigated as anti-fungal agents against Aspergillus niger in different experimental conditions, including as nanofillers in cellulosic fibres.
View Article and Find Full Text PDFThis paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.
View Article and Find Full Text PDFWe describe, in this paper, the sol-gel synthesis of di-ureasil based nanocomposites prepared in situ in the presence of organically capped CdSe quantum dots (QDs) or CdSe QDs which have been coated with a ZnS shell. For the latter a new chemical route to coat the CdSe QDs with ZnS shells was investigated and is now reported. The QDs became well dispersed in the final nanocomposites, whose microstructural homogeneity was evaluated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses.
View Article and Find Full Text PDF