Amazon forests are becoming increasingly vulnerable to disturbances such as droughts, fires, windstorms, logging, and forest fragmentation, all of which lead to forest degradation. Nevertheless, quantifying the extent and severity of disturbances and their cumulative impact on forest degradation remains a significant challenge. In this study, we combined multispectral data from Landsat sensors with hyperspectral data from the Earth Observing-One (Hyperion/EO-1) sensor to evaluate the efficacy of multiple vegetation indices in detecting forest responses to disturbances in an experimentally burned forest in southeastern Amazonia.
View Article and Find Full Text PDFTropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species' persistence in these new environmental conditions. Here, we assessed potential changes in tree species' functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia.
View Article and Find Full Text PDFThe Brazilian Cerrado is one of the most biodiverse savannas in the world, yet 46% of its original cover has been cleared to make way for crops and pastures. These extensive land-use transitions (LUTs) are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperature (LST), and ultimately reducing precipitation. Here, we quantify the impacts of LUTs on ET and LST in the Cerrado by combining MODIS satellite data with annual land use and land cover maps from 2006 to 2019.
View Article and Find Full Text PDFMaintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances-processes that occur without forest clearing but are increasingly important drivers of biomass loss.
View Article and Find Full Text PDFDrought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO and H O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010.
View Article and Find Full Text PDFAgricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (NO) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2017
The 2012 Brazilian Forest Code governs the fate of forests and savannas on Brazil's 394 Mha of privately owned lands. The government claims that a new national land registry (SICAR), introduced under the revised law, could end illegal deforestation by greatly reducing the cost of monitoring, enforcement, and compliance. This study evaluates that potential, using data from state-level land registries (CAR) in Pará and Mato Grosso that were precursors of SICAR.
View Article and Find Full Text PDFIntensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood.
View Article and Find Full Text PDFHydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection.
View Article and Find Full Text PDFInteractions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2013
The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2013
The Brazilian state of Mato Grosso was a global deforestation hotspot in the early 2000s. Deforested land is used predominantly to produce meat for distal consumption either through cattle ranching or soya bean for livestock feed. Deforestation declined dramatically in the latter part of the decade through a combination of market forces, policies, enforcement and improved monitoring.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2013
Large-scale cattle and crop production are the primary drivers of deforestation in the Amazon today. Such land-use changes can degrade stream ecosystems by reducing connectivity, changing light and nutrient inputs, and altering the quantity and quality of streamwater. This study integrates field data from 12 catchments with satellite-derived information for the 176,000 km(2) upper Xingu watershed (Mato Grosso, Brazil).
View Article and Find Full Text PDFFrom 2006 to 2010, deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) whereas agricultural production reached an all-time high. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001 to 2005 was entirely due to cropland expansion into previously cleared pasture areas (74%) or forests (26%).
View Article and Find Full Text PDF