Publications by authors named "Marcia Levitus"

2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP.

View Article and Find Full Text PDF

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of/photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule.

View Article and Find Full Text PDF

Uracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants (k/K) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs.

View Article and Find Full Text PDF

PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact.

View Article and Find Full Text PDF

Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli β-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the β-clamp is of the order of 10 pM in buffers of moderate ionic strength.

View Article and Find Full Text PDF

Sensing and responding to temperature is crucial in biology. The TRPV1 ion channel is a well-studied heat-sensing receptor that is also activated by vanilloid compounds, including capsaicin. Despite significant interest, the molecular underpinnings of thermosensing have remained elusive.

View Article and Find Full Text PDF

Appending conformationally restraining ring systems to the cyanine chromophore creates exceptionally bright fluorophores in the visible range. Here, we report the application of this strategy in the near-infrared range through the preparation of the first restrained heptamethine indocyanine. Time-resolved absorption spectroscopy and fluorescence correlation spectroscopy verify that, unlike the corresponding parent unrestrained variant, the restrained molecule is not subject to photoisomerization.

View Article and Find Full Text PDF

The measurement of fluorescence spectra and the determination of fluorescence quantum yields in transparent samples are conceptually simple tasks, but these procedures are subject to several pitfalls that can lead to significant errors. Available technical reports and protocols often assume that the reader possesses a solid theoretical background in spectroscopy and has ample experience with fluorescence instrumentation, but this is often not the case given the many applications of fluorescence in diverse fields of science. The goal of this tutorial is to provide a didactic treatment of the topic that will hopefully be accessible to readers without extensive expertise in the field of fluorescence.

View Article and Find Full Text PDF

Fluorescence time traces are used to report on dynamical properties of molecules. The basic unit of information in these traces is the arrival time of individual photons, which carry instantaneous information from the molecule, from which they are emitted, to the detector on timescales as fast as microseconds. Thus, it is theoretically possible to monitor molecular dynamics at such timescales from traces containing only a sufficient number of photon arrivals.

View Article and Find Full Text PDF

Protein-induced fluorescence enhancement (PIFE) is an increasingly used approach to investigate DNA-protein interactions at the single molecule level. The optimal probe for this type of application is highly photostable, has a high absorption extinction coefficient, and has a moderate fluorescence quantum yield that increases significantly when the dye is in close proximity to a large macromolecule such as a protein. So far, the green-absorbing symmetric cyanine known as Cy3 has been the probe of choice in this field because the magnitude of the increase observed upon protein binding (usually 2-4 -fold) is large enough to allow for the analysis of protein dynamics on the inherently noisy single-molecule signals.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS), is a widely used tool routinely exploited for in vivo and in vitro applications. While FCS provides estimates of dynamical quantities, such as diffusion coefficients, it demands high signal to noise ratios and long time traces, typically in the minute range. In principle, the same information can be extracted from microseconds to seconds long time traces; however, an appropriate analysis method is missing.

View Article and Find Full Text PDF

The cyanine dye Cy3 is a popular fluorophore used to probe the binding of proteins to nucleic acids as well as their conformational transitions. Nucleic acids labeled only with Cy3 can often be used to monitor interactions with unlabeled proteins because of an enhancement of Cy3 fluorescence intensity that results when the protein contacts Cy3, a property sometimes referred to as protein-induced fluorescence enhancement (PIFE). Although Cy3 fluorescence is enhanced upon contacting most proteins, we show here in studies of human replication protein A and Escherichia coli single-stranded DNA binding protein that the magnitude of the Cy3 enhancement is dependent on both the protein as well as the orientation of the protein with respect to the Cy3 label on the DNA.

View Article and Find Full Text PDF

The carbon-fixing activity of enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is regulated by Rubisco activase (Rca), a ring-forming ATPase that catalyzes inhibitor release. For higher plant Rca, the catalytic roles played by different oligomeric species have remained obscure. Here, we utilized fluorescence-correlation spectroscopy to estimate dissociation constants for the dimer-tetramer, tetramer-hexamer, hexamer-12-mer, and higher-order assembly equilibria of tobacco Rca.

View Article and Find Full Text PDF

This paper was originally published under standard Springer Nature copyright. As of the date of this correction, the Analysis is available online as an open-access paper with a CC-BY license. No other part of the paper has been changed.

View Article and Find Full Text PDF

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes.

View Article and Find Full Text PDF

Rhodamine dyes in aqueous solution form non-fluorescent dimers with a plane-to-plane stacking geometry (H-dimers). The self-quenching properties of these dimers have been exploited to probe the conformation and dynamics of proteins using a variety of fluorescence approaches that require the interpretation of fluorescence intensities, lifetimes and fluctuations. Here, we report on a systematic study of the photophysical properties of three rhodamine dyes (tetramethylrhodamine, Alexa 488 and Alexa 546) covalently bound to the E.

View Article and Find Full Text PDF

Clamp loaders load ring-shaped sliding clamps onto DNA where the clamps serve as processivity factors for DNA polymerases. In the first stage of clamp loading, clamp loaders bind and stabilize clamps in an open conformation, and in the second stage, clamp loaders place the open clamps around DNA so that the clamps encircle DNA. Here, the mechanism of the initial clamp opening stage is investigated.

View Article and Find Full Text PDF

Far-red cyanine fluorophores find extensive use in modern microscopy despite modest quantum yields. To improve the photon output of these molecules, we report a synthetic strategy that blocks the major deactivation pathway: excited-state trans-to-cis polyene rotation. In the key transformation, a protected dialdehyde precursor undergoes a cascade reaction to install the requisite tetracyclic ring system.

View Article and Find Full Text PDF

Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics.

View Article and Find Full Text PDF

Nine amphiphilic macromolecules with decyl and oligo(ethylene glycol) side chains, randomly distributed along a common poly(methacrylate) backbone, were synthesized from the radical copolymerization of appropriate methacrylate monomers. The resulting amphiphilic constructs differ in (1) the ratio between their hydrophobic and hydrophilic components, (2) the length of their oligo(ethylene glycol) chains, and/or (3) the molecular weight. When the ratio between hydrophobic and hydrophilic segments is comprised between 6:1 and 1:2, the macromolecules assemble spontaneously into particles with nanoscaled dimensions in neutral buffer and capture hydrophobic borondipyrromethene chromophores in their interior.

View Article and Find Full Text PDF