Schizophrenia has been consistently characterized by abnormal patterns of gene down-regulation, increased restrictive chromatin assemblies, and reduced transcriptional activity. Histone methyltransferase (HMT) mRNA and H3K9me2 levels are elevated in postmortem brain and peripheral blood cells of persons with schizophrenia. Moreover, this epigenomic state likely contributes to the disease, as HMT levels correlate with clinical symptomatology.
View Article and Find Full Text PDFRationale: Allopregnanolone (ALLO) is an endogenous neuroactive steroid thought to alter the reinforcement value of alcohol (ethanol) due to its actions as a positive modulator of the GABAA receptor (GABAAR). Extrasynaptic GABAARs may be a particularly sensitive target of ethanol and neuroactive steroids. Previous work showed that systemic injections of an ALLO analog, ganaxolone (GAN), or an extrasynaptic GABAAR agonist (gaboxadol; THIP) decreased ethanol intake in male mice with limited access to ethanol.
View Article and Find Full Text PDFRationale: The rapid membrane actions of neuroactive steroids, particularly via an enhancement of γ-aminobutyric acidA receptors (GABAARs), participate in the regulation of central nervous system excitability. Prior evidence suggests an inverse relationship between endogenous GABAergic neuroactive steroid levels and behavioral changes in excitability during ethanol withdrawal.
Objectives: Previously, we found that ethanol withdrawal significantly decreased plasma allopregnanolone (ALLO) levels, a potent GABAergic neuroactive steroid, and decreased GABAAR sensitivity to ALLO in Withdrawal Seizure-Prone (WSP) but not in Withdrawal Seizure-Resistant (WSR) mice.
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence.
View Article and Find Full Text PDFRecent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids.
View Article and Find Full Text PDFThe high rate of therapeutic failure in the management of alcohol use disorders (AUDs) underscores the urgent need for novel and effective strategies that can deter ethanol consumption. Recent findings from our group showed that ivermectin (IVM), a broad-spectrum anthelmintic with high tolerability and optimal safety profile in humans and animals, antagonized ethanol-mediated inhibition of P2X4 receptors (P2X4Rs) expressed in Xenopus oocytes. This finding prompted us to hypothesize that IVM may reduce alcohol consumption; thus, in the present study we investigated the effects of this agent on several models of alcohol self-administration in male and female C57BL/6 mice.
View Article and Find Full Text PDFBackground: Neurosteroids and other γ-aminobutyric acid(A) (GABA(A) ) receptor-modulating compounds have been shown to affect ethanol intake, although their mechanism remains unclear. This study examined how patterns of 24-hour ethanol drinking in mice were altered with the synthetic GABAergic neurosteroid ganaxolone (GAN), with an inhibitor of neurosteroid synthesis (finasteride [FIN]), or a GABA(A) receptor agonist with some selectivity at extrasynaptic receptors (gaboxadol HCL [THIP]).
Methods: Male C57BL/6J mice had continuous access to a 10% v/v ethanol solution (10E) or water.
Prepulse inhibition (PPI) refers to the reduction in the startle response when a startling stimulus is preceded by a weak prestimulus, and is an endophenotype of deficient sensorimotor gating in several neuropsychiatric disorders. Emerging evidence suggests that norepinephrine (NE) regulates PPI, however, the circuitry involved is unknown. We found recently that stimulation of the locus coeruleus (LC), the primary source of NE to the forebrain, induces a PPI deficit that is a result of downstream NE release.
View Article and Find Full Text PDF