There is a well-recognized relationship between a person's body burden of essential trace elements such as copper and their neurological function in which both deficiencies and exposures to excessive concentrations are associated with adverse clinical outcomes. Preclinical studies indicate chronic excess copper exposure is associated with altered motor function, dopaminergic neuronal loss, astrocytosis, and microgliosis. Copper also promotes oligomerization and fibrilization of α-synuclein suggesting it may hasten the course of an α-synucleinopathy.
View Article and Find Full Text PDFAnimals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs).
View Article and Find Full Text PDFAdverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including , suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform.
View Article and Find Full Text PDFDecades of research attempting to slow the onset of Alzheimer's disease (AD) indicates that a better understanding of memory will be key to the discovery of effective therapeutic approaches. Here, we ask whether prodromal neural network dysfunction might occur in the hippocampal trisynaptic circuit by using α5IA (an established memory enhancer and selective negative allosteric modulator of extrasynaptic tonically active α5GABA-A receptors) as a probe drug in TgF344-AD transgenic rats, a model for β-amyloid induced early onset AD. The results demonstrate that orally bioavailable α5IA increases CA1 pyramidal cell mean firing rates during foraging and peak ripple amplitude during wakeful immobility in F344 rats in a familiar environment.
View Article and Find Full Text PDFParkinsonism and encephalopathy are frequently seen in patients who survive carbon monoxide (CO) poisoning. Neurological findings associated with CO poisoning can emerge immediately after cessation of exposure or following a brief period of pseudo-recovery. When present, the tremor associated with CO poisoning is typical of the postural/intention type.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
April 2019
Memory dysfunction is a symptomatic feature of many neurologic and neuropsychiatric disorders; however, the basic underlying mechanisms of memory and altered states of circuitry function associated with disorders of memory remain a vast unexplored territory. The initial discovery of endogenous neurosteroids triggered a quest to elucidate their role as neuromodulators in normal and diseased brain function. In this review, based on the perspective of our own research, the advances leading to the discovery of positive and negative neurosteroid allosteric modulators of GABA type-A (GABA), NMDA, and non-NMDA type glutamate receptors are brought together in a historical and conceptual framework.
View Article and Find Full Text PDFUnmasking of latent neurodegenerative disease has been reported following exposure to chemicals that share one or more mechanisms of action in common with those implicated in the specific disease. For example, unmasking of latent Parkinson's disease (PD) has been associated with exposure to anti-dopaminergic agents, while the progression of pre-existing mild cognitive impairment and unmasking of latent Alzheimer's disease has been associated with exposure to general anesthetic agents which promote Aβ protein aggregation. This literature review and clinical case report about a 45-year-old man with no family history of motor neuron disease who developed overt symptoms of a neuromuscular disorder in close temporal association with his unwitting occupational exposure to volatile organic compounds (VOCs) puts forth the hypothesis that exposure to VOCs such as toluene, which disrupt motor function and increase oxidative stress, can unmask latent ALS type neuromuscular disorder in susceptible individuals.
View Article and Find Full Text PDFAn earlier age at onset of Parkinson's disease (PD) has been reported to be associated with occupational exposures to manganese and hydrocarbon solvents suggesting that exposure to neurotoxic chemicals may hasten the progression of idiopathic PD. In this study the role of occupational exposure to metals and pesticides in the progression of idiopathic PD was assessed by looking at age at disease onset. The effects of heritable genetic risk factors, which may also influence age at onset, was minimized by including only sporadic cases of PD with no family history of the disease (n=58).
View Article and Find Full Text PDFLearning and memory deficits associated with age-related mild cognitive impairment have long been attributed to impaired processing within the hippocampus. Hyperactivity within the hippocampal CA3 region that is associated with aging is mediated in part by a loss of functional inhibitory interneurons and thought to underlie impaired performance in spatial memory tasks, including the abnormal tendency in aged animals to pattern complete spatial representations. Here, we asked whether the spatial firing patterns of simultaneously recorded CA3 and CA1 neurons in young and aged rats could be manipulated pharmacologically to selectively reduce CA3 hyperactivity and thus, according to hypothesis, the associated abnormality in spatial representations.
View Article and Find Full Text PDFPharmacol Rev
October 2014
Anxiety disorders are a major public health concern. Here, we examine the familiar area of anxiolysis in the context of a systems-level understanding that will hopefully lead to revealing an underlying pharmacological connectome. The introduction of benzodiazepines nearly half a century ago markedly improved the treatment of anxiety disorders.
View Article and Find Full Text PDF