In this study, amphiphilic polymers were investigated as biomaterials that can control dexamethasone (DXM) release. Such materials present interfacial properties in the presence of water and an oily phase that can result in lyotropic liquid crystalline systems (LLCS). In addition, they can form colloidal nanostructures similar to those in living organisms, such as bilayers and hexagonal and cubic phases, which can be exploited to solubilize lipophilic drugs to sustain their release and enhance bioavailability.
View Article and Find Full Text PDFNanotechnology offers advantages for new drug delivery design by providing drug targeting while minimizing the side effects. Polyoxyethylene 20 cetyl alcohol (CETETH-20) is a surfactant that may form nanostructured systems, such as liquid crystals, when in contact with water/oil, which are structurally similar to biological membranes and may improve skin interaction. The aim of this study was to develop and characterize CETETH 20-based nanostructured systems by combining CETETH-20 with water and different oily phases, including PEG-12-dimethicone for topical drug administration.
View Article and Find Full Text PDFMelanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties.
View Article and Find Full Text PDF