In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil.
View Article and Find Full Text PDFSince the beginning of the XXI Century, the yellow fever virus (YFV) has been cyclically spreading from the Amazon basin to Brazil's South and Southeast regions, culminating in an unprecedented outbreak that started in 2016. In this work, we studied four YFV isolated from non-human primates obtained during outbreaks in the states of Rio Grande do Sul in 2008 (PR4408), Goiás (GO05), and Espírito Santo (ES-504) in 2017, and Rio de Janeiro (RJ 155) in 2019. These isolates have genomic differences mainly distributed in non-structural proteins.
View Article and Find Full Text PDFViruses
March 2020
In the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen.
View Article and Find Full Text PDFThe current outbreak of yellow fever virus (YFV) that is afflicting Brazil since the end of 2016 probably originated from a re-introduction of YFV from endemic areas into the non-endemic Southeastern Brazil. However, the lack of genomic sequences from endemic regions hinders the tracking of YFV's dissemination routes. We assessed the origin and spread of the ongoing YFV Brazilian outbreak analyzing a new set of YFV strains infecting humans, non-human primates (NHPs) and mosquitoes sampled across five Brazilian states from endemic and non-endemic regions between 2015 and 2018.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
June 2019
Background: Alternative transmission routes have been described for Zika virus (ZIKV). Here, we assessed for the first time the venereal transmission of ZIKV between Aedes aegypti under laboratory conditions.
Results: Orally-infected mosquito females were able to transmit the virus to males venereally, and males inoculated intrathoracically were capable of infecting females during mating.
Ae. aegypti is the main vector of dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. The transmission dynamics of these arboviruses, especially the arboviral circulation in the mosquito population during low and high transmission seasons in endemic areas are still poorly understood.
View Article and Find Full Text PDFBackground: Dengue, a mosquito-borne viral infection caused by one of the four dengue virus (DENV) serotypes (DENV-1 to 4), replicate alternately on the mosquito vector and human host and are responsible for infections throughout tropical and subtropical regions of the world. In Brazil, the disease has become a major public health problem and the introduction of DENV-3 in 2000 in Rio de Janeiro (RJ) was associated with severe dengue epidemics. The potential emergence of strains associated with severe disease highlights the need for the surveillance of DENV in human host and vectors.
View Article and Find Full Text PDFDengue fever has become the most important vector-borne viral disease in Brazil. Human facilitated transport of desiccation-resistant eggs has led to its two most important vectors, Aedes aegypti and Ae. albopictus, becoming widespread.
View Article and Find Full Text PDF