Publications by authors named "Marcia Correia"

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus (DM) is associated with severe forms of COVID-19 but little is known about the diabetes-related phenotype considering pre-admission, on-admission and data covering the entire hospitalization period.

Methods: We analyzed COVID-19 inpatients (n = 3327) aged 61.2(48.

View Article and Find Full Text PDF

Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism.

View Article and Find Full Text PDF

Small-angle X-ray Scattering (SAXS) is a versatile and powerful technique with applications in a wide range of fields. The continuous improvements in hardware, data analysis software, and standards for validation significantly contributed to increase its popularity and, nowadays, SAXS is a well-established method. SAXS allows to study flexible and dynamic systems (e.

View Article and Find Full Text PDF

Thermal shift assay (TSA), also commonly designed by differential scanning fluorimetry (DSF) or ThermoFluor, is a technique relatively easy to implement and perform, useful in a myriad of applications. In addition to versatility, it is also rather inexpensive, making it suitable for high-throughput approaches. TSA uses a fluorescent dye to monitor the thermal denaturation of the protein under study and determine its melting temperature (T).

View Article and Find Full Text PDF

Catechol--methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials.

View Article and Find Full Text PDF

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity.

View Article and Find Full Text PDF

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level.

View Article and Find Full Text PDF

The family 81 glycoside hydrolase (GH81) from Clostridium thermocellum is a β-1,3-glucanase belonging to cellulosomal complex. The gene encoding GH81 from Clostridium thermocellum (CtLam81A) was cloned and expressed displaying a molecular mass of ~82 kDa. CtLam81A showed maximum activity against laminarin (100 U/mg), followed by curdlan (65 U/mg), at pH 7.

View Article and Find Full Text PDF

Molybdenum and tungsten are taken up by bacteria and archaea as their soluble oxyanions through high affinity transport systems belonging to the ATP-binding cassette (ABC) transporters. The component A (ModA/TupA) of these transporters is the first selection gate from which the cell differentiates between MoO, WO and other similar oxyanions. We report the biochemical characterization and the crystal structure of the apo-TupA from Desulfovibrio desulfuricans G20, at 1.

View Article and Find Full Text PDF

Unlabelled: There is a scarcity of data of zinc transporter-8 autoantibody (ZnT8A) on mixed populations such as Brazilian. Therefore, we evaluated the relevance of ZnT8A for type 1 diabetes (T1D) diagnosis and the role of ZnT8 coding gene (SLC30A8) in T1D predisposition. Patients with T1D (n = 629; diabetes duration = 11 (6-16) years) and 651 controls were genotyped for SLC30A8 rs16889462 and rs2466295 variants (BeadXpress platform).

View Article and Find Full Text PDF

Ethnic admixtures may interfere with the definition of type 1 diabetes (T1D) risk determinants. The role of HLA, PTPN22, INS-VNTR, and CTLA4 in T1D predisposition was analyzed in Brazilian T1D patients (n = 915), with 81.7% self-reporting as white and 789 controls (65.

View Article and Find Full Text PDF

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood.

View Article and Find Full Text PDF

Background: We conducted a comparison between the dipeptidyl-peptidase-4(DPP-4) inhibitor sitagliptin versus NPH insulin as an add-on therapies in patients with type 2 diabetes mellitus (T2D) failing oral medications. The objective was to ascertain the better indication in long-duration diabetes.

Methods: thirty-five T2D patients inadequately controlled with metformin plus glyburide were randomized to receive sitagliptin (n=18) or bedtime NPH insulin (n=17) for 12 months.

View Article and Find Full Text PDF

The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E.

View Article and Find Full Text PDF

Background: To compare the effects of nateglinide and rosiglitazone on inflammatory markers, GLP-1 levels and metabolic profile in patients with type 2 diabetes (DM2).

Methods: A prospective study was performed in 20 patients with DM2, mean age 51.82 ± 8.

View Article and Find Full Text PDF

Background: Blood glucose control is fundamental albeit not enough to prevent diabetic macrovascular complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in improving metabolic parameters in patients with type 2 diabetes mellitus (T2DM) but little is known about its cardiovascular effects. We compared the DPP-4 inhibitor sitagliptin with bedtime NPH insulin (NPH) as add-on therapy in patients with T2DM, aiming to ascertain which drug would have additional cardioprotective effects.

View Article and Find Full Text PDF

The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA.

View Article and Find Full Text PDF

Objective: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and glucose and lipid profiles in patients with type 2 diabetes.

Methods: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin or glimepiride therapy groups.

View Article and Find Full Text PDF

The cellulosome, a highly elaborate extracellular multi-enzyme complex of cellulases and hemicellulases, is responsible for the degradation of plant cell walls. The xylanase CtXyl5A (Cthe_2193) is a multimodular arabinoxylanase which is one of the largest components of the Clostridium thermocellum cellulosome. The N-terminal catalytic domain of CtXyl5A, which is a member of glycoside hydrolase family 5 (GH5), is responsible for the hydrolysis of arabinoxylans.

View Article and Find Full Text PDF

The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate.

View Article and Find Full Text PDF

Clostridium thermocellum is a well-characterized cellulose-degrading microorganism. The genome sequence of C. thermocellum encodes a number of proteins that contain type I dockerin domains, which implies that they are components of the cellulose-degrading apparatus, but display no significant sequence similarity to known plant cell wall-degrading enzymes.

View Article and Find Full Text PDF

The enzymatic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The enzymes that catalyze this process include xylanases that degrade xylan, a β-1,4-xylose polymer that is decorated with various sugars. Although xylanases efficiently hydrolyze unsubstituted xylans, these enzymes are unable to access highly decorated forms of the polysaccharide, such as arabinoxylans that contain arabinofuranose decorations.

View Article and Find Full Text PDF

The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored.

View Article and Find Full Text PDF

Noncatalytic carbohydrate-binding modules (CBMs), which are found in a variety of carbohydrate-degrading enzymes, have been grouped into sequence-based families. CBMs, by recruiting their appended enzymes onto the surface of the target substrate, potentiate catalysis particularly against insoluble substrates. Family 6 CBMs (CBM6s) display unusual properties in that they present two potential ligand-binding sites termed clefts A and B, respectively.

View Article and Find Full Text PDF