Publications by authors named "Marcia C F Silva"

Diabetes mellitus is a metabolic disorder commonly associated with atherosclerosis. Plants with therapeutic potential, such as Kunth, emerge as effective alternatives for treating these diseases. Therefore, this work aims to analyze the antihyperglycemic and antidyslipidemic potential of the hydroalcoholic extract of Kunth (ELo) in alloxan-diabetic rats.

View Article and Find Full Text PDF

This study aims to investigate the relationship between social determinants of health (SDH), incidence, and mortality to verify which sociodemographic factors, symptoms, and comorbidities predict clinical management; second, this study aims to conduct a survival analysis of individuals with COVID-19 in the Xingu Health Region. Consequently, this study adopted an ecological framework, employing secondary data of COVID-19-positive individuals from the Xingu Health Region, Pará State, Brazil. The data were obtained through the database of the State of Pará Public Health Secretary (SESPA) for the period from March 2020 to March 2021.

View Article and Find Full Text PDF

Mercury is a ubiquitous pollutant in the environment with potential neurotoxic effects. Several populations are susceptible to mercurial exposure, especially methylmercury (MeHg) at low doses for long periods through food consumption. Given this, the present work aimed to assess the effects of long-term MeHg exposure on the cerebellum of rats from a translational perspective using a representative dose, assessing molecular, biochemical, morphological, and behavioral parameters.

View Article and Find Full Text PDF

Methylmercury (MeHg) is the most common organic form of mercury (Hg) that humans are exposed and is considered an environmental pollutant. Several populations that live in endemic regions of MeHg exposure are subject to the toxicant for long periods, including pregnant women and children, causing damage to several organs during early periods of development. Alveolar bone is an essential structure for the oral cavity, responsible for supporting teeth and masticatory forces.

View Article and Find Full Text PDF

Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring.

View Article and Find Full Text PDF

The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats.

View Article and Find Full Text PDF

Background: In comparison to organic mercury (MeHg), the environmental inorganic mercury (IHg) can be found in some skin-lightening cosmestics were considered "harmless" for a long time. However, recent studies have shown that long-term exposure to low doses of IHg may affect biological systems. Therefore, this study investigated the effects of IHg long-term exposure to the alveolar bone of adult rats.

View Article and Find Full Text PDF

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce.

View Article and Find Full Text PDF

Background: Methylmercury (MeHg) is still considered a global pollutant of major concern; thus, it becomes relevant to investigate and validate alternative diagnostic methods to track early-life human exposure. This study aimed to evaluate the salivary parameters and to characterize potential mechanisms of oxidative damage on the salivary glands (SG) of offspring rats after pre- and postnatal environmental-experimental MeHg exposure.

Methods: Pregnant Wistar rats were daily exposed to 40 μg/kg MeHg during both gestational and lactation periods.

View Article and Find Full Text PDF

The alveolar bone is an important mineralized structure of the periodontal support apparatus, and information about the methylmercury (MeHg) effects on the structural integrity is scarce. Therefore, this study aimed to investigate whether systemic, chronic, and low-dose exposure to MeHg can change the alveolar bone microstructure of rats. Adult Wistar rats (n = 30) were exposed to 0.

View Article and Find Full Text PDF

Methylmercury (MeHg) is considered by the World Health Organization (WHO) as one of the chemicals of greatest public health concern. Although central nervous system (CNS) is the main target organ, the effects over the spinal cord are not well understood, especially in chronic exposure at similar doses to those faced by humans. This study aimed to investigate possible changes on global proteomic profile and oxidative biochemistry status of rats spinal cord, related to the maintenance and balance of the organism functioning, mimicking a human daily exposure by diet (chronic and with relatively low levels).

View Article and Find Full Text PDF

Mercury chloride (HgCl) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl exposure on spinal cord of adult rats.

View Article and Find Full Text PDF

Stroke is one of the main causes of human disability worldwide. Ischemic stroke is mostly characterized by metabolic collapse and fast tissue damage, followed by secondary damage in adjacent regions not previously affected. Heavy metals intoxication can be associated with stroke incidence, because of their damaging action in the vascular system.

View Article and Find Full Text PDF

Chronic exposure to mercury chloride (HgCl) has been shown to promote oxidative stress and cell death in the central nervous system of adult rats displaying motor and cognitive impairments. However, there are no investigations about neurochemical function after this type of exposure in rodents that may be associated with those behavioral changes already reported. Thus, the aim of this study was to analyze glutamatergic and GABAergic dysfunctions in the motor cortex and hippocampus of adult rats, in a model of chronic exposure to HgCl in.

View Article and Find Full Text PDF

Methylmercury (MeHg) is an important toxicant that causes cognitive dysfunctions in humans. This study aimed to investigate the proteomic and biochemical alterations of the hippocampus associated with behavioural consequences of low doses of MeHg in a long-term exposure model, and to realistically mimic in vivo the result of human exposure to this toxicant. Adult Wistar male rats were exposed to a dose of MeHg at 0.

View Article and Find Full Text PDF

Moderate ethanol consumption (MEC) is increasing among women. Alcohol exposure usually starts in adolescence and tends to continue until adulthood. We aimed to investigate MEC impacts during adolescence until young adulthood of female rats.

View Article and Find Full Text PDF

Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects.

View Article and Find Full Text PDF

Mercury (Hg) is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl) to promote hippocampal dysfunction by employing a chronic exposure model.

View Article and Find Full Text PDF

Environmental and occupational mercury exposure is considered a major public health issue. Despite being well known that MeHg exposure causes adverse effects in several physiologic functions, MeHg effects on salivary glands still not completely elucidated. Here, we investigated the cellular MeHg-induced damage in the three major salivary glands (parotid, submandibular, and sublingual) of adult rats after chronic, systemic and low doses of MeHg exposure.

View Article and Find Full Text PDF

Methylmercury (MeHg) is one of the most toxic species of mercury, causing several systemic damages; however, its effect on the salivary glands has rarely been explored to date. This study was aimed at analyzing the mercury deposit, oxidative stress markers, and cell viability in parotid and submandibular rat salivary glands after chronic methylmercury intoxication. Herein, forty male Wistar rats (40 days old) were used in the experiment.

View Article and Find Full Text PDF

Methylmercury (MeHg) is one of the most toxic mercury species, which can cause many systemic damages, but little is known about its effect in the salivary glands. This study aimed to analyze the mercury levels, oxidative stress, and proteomic profile in parotid, submandibular, and sublingual salivary glands of rats, after chronic MeHg intoxication. Two groups of twenty male Wistar rats (90 days of age) were used on the experiment.

View Article and Find Full Text PDF

Aluminum absorption leads to deposits in several tissues. In this study, we have investigated, to our knowledge for the first time, aluminum deposition in the salivary glands in addition to the resultant cellular changes in the parotid and submandibular salivary glands in a model of chronic intoxication with aluminum citrate in rats. Aluminum deposits were observed in the parotid and submandibular glands.

View Article and Find Full Text PDF

The aims of this study were to evaluate whether chronic intoxication with mercury chloride (HgCl2), in a low concentration over a long time, can be deposited in the central nervous tissue and to determine if this exposure induces motor and cognitive impairments. Twenty animals were intoxicated for 45 days at a dose of 0.375 mg/kg/day.

View Article and Find Full Text PDF