Unlabelled: Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions.
View Article and Find Full Text PDFThe Notch pathway is a key cancer driver and is important in tumor progression. Early research suggested that Notch activity was highly dependent on the expression of the intracellular cleaved domain of Notch-1 (NICD). However, recent insights into Notch signaling reveal the presence of Notch pathway signatures, which may vary depending on different cancer types and tumor microenvironments.
View Article and Find Full Text PDFHuman T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites.
View Article and Find Full Text PDFDecades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects.
View Article and Find Full Text PDFFBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology.
View Article and Find Full Text PDFThe Pim family of serine/threonine kinases promote tumorigenesis by enhancing cell survival and inhibiting apoptosis. Three isoforms exist, Pim-1, -2, and -3, that are highly expressed in hematological cancers, including Pim-1 in adult T-cell leukemia (ATL). Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of ATL, a dismal lymphoproliferative disease known as adult T-cell leukemia.
View Article and Find Full Text PDFBackground: Human T cell Leukemia virus type 1 (HTLV-I) is etiologically linked to adult T cell leukemia/lymphoma (ATL) and an inflammatory neurodegenerative disease called HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP). The exact genetic or epigenetic events and/or environmental factors that influence the development of ATL, or HAM/TSP diseases are largely unknown. The tumor suppressor gene, Fragile Histidine Triad Diadenosine Triphosphatase (FHIT), is frequently lost in cancer through epigenetic modifications and/or deletion.
View Article and Find Full Text PDFAdult T-cell leukemia (ATL) is an incurable leukemia deriving from human T-cell leukemia virus (HTLV-I) infected cells. In our most recent study, we discovered that methylation of the tumor suppressor, fragile histidine triad gene (FHIT), exists in the majority of acute and chronic ATL patients. Methylation was seen in non-tumorigenic cells, in cells with low levels of HTLV-I integrated DNA, in longitudinal samples from HTLV-I carriers, in a percentage of HTLV-I carriers, and in direct descendants of ATL patients.
View Article and Find Full Text PDFBackground: Human T cell leukemia virus type 1 (HTLV-1)-associated adult T cell leukemia (ATL) has a very poor prognosis with a median survival of 8 months and a 4-year overall survival of 11% for acute ATL. Present treatment options are limited and there is no curative therapy for ATL. Ubiquitin ligase FBXW7 is commonly mutated or functionally inactivated in human cancers.
View Article and Find Full Text PDFBackground: HTLV-1 is a retrovirus that infects over 20 million people worldwide and is responsible for the hematopoietic malignancy adult T cell leukemia (ATL). We previously demonstrated that Notch is constitutively activated in ATL cells. Activating genetic mutations were found in Notch; however, Notch signaling was also activated in the absence of genetic mutations suggesting the existence of other mechanisms.
View Article and Find Full Text PDFThe ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006).
View Article and Find Full Text PDFThe progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2016
Human T-cell leukemia virus type 1 (HTLV-I) is associated with adult T-cell leukemia (ATL), an aggressive lymphoproliferative disease with a dismal prognosis. We have previously described the presence of Notch1 activating mutations and constitutive Notch1 signaling in patients with acute ATL. In this study, we report a high frequency of F-box and WD repeat domain containing 7 (FBXW7)/hCDC4 mutations within the WD40 substrate-binding domain in 8 of 32 acute ATL patients (25%).
View Article and Find Full Text PDFHuman T-cell leukemia virus type 1 (HTLV-1)-associated adult T-cell leukemia and T-cell lymphoma (ATL) are aggressive diseases with poor prognoses, limited therapeutic options, and no curative treatment. In this study, we used a mouse model of ATL and restored expression of the microRNA, miR-124a, to identify in vivo downstream effectors responsible for its tumor-suppressive functions in ATL cells. Our results revealed that STAT3, a direct target of miR-124a, is constitutively activated in HTLV-I-transformed cells and ATL cells, and activating STAT3 mutations were detected in 25.
View Article and Find Full Text PDFInt J Cancer Oncol
June 2015
While telomerase (hTERT) activity is absent from normal somatic cells, reactivation of hTERT expression is a hallmark of cancer cells. Telomerase activity is required for avoiding replicative senescence and supports immortalization of cellular proliferation. Only a minority of cancer cells rely on a telomerase-independent process known as alternative lengthening of telomeres, ALT, to sustain cancer cell proliferation.
View Article and Find Full Text PDFWe have previously reported on the deregulation of cellular microRNAs involved in hematopoiesis and inflammation in human T-cell lymphotropic virus type 1 (HTLV-I)-transformed cells. In this study, we demonstrate that miR-150 and miR-223 specifically target the signal transducer and activator of transcription 1 (STAT1) 3' untranslated region, reducing STAT1 expression and dampening STAT1-dependent signaling in human T cells. The effects of miR-150 and miR-223 on endogenous STAT1 were confirmed using inducible cell lines.
View Article and Find Full Text PDFBackground: Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus associated with adult T-cell leukemia (ATL), an aggressive CD4 T-cell proliferative disease with dismal prognosis. The long latency preceding the development of the disease and the low incidence suggests that the virus itself is not sufficient for transformation and that genetic defects are required to create a permissive environment for leukemia. In fact, ATL cells are characterized by profound genetic modifications including structural and numerical chromosome alterations.
View Article and Find Full Text PDFAdult T-cell leukemia/lymphoma (ATL) is etiologically linked to infection with the human T-cell leukemia/lymphoma virus type 1 (HTLV-I). ATL is classified into 4 distinct clinical diseases: acute, lymphoma, chronic, and smoldering. Acute ATL is the most aggressive form, representing 60% of cases and has a 4-year survival of < 5%.
View Article and Find Full Text PDFUnlabelled: The establishment of a latent reservoir by human tumor viruses is a vital step in initiating cellular transformation and represents a major shortcoming to current therapeutic strategies and the ability to eradicate virus-infected cells. Human T-cell leukemia virus type 1 (HTLV-1) establishes a lifelong infection and is linked to adult T-cell leukemia lymphoma (ATLL). Here, we demonstrate that HTLV-1 p30 recruits the cellular proteasome activator PA28γ onto the viral tax/rex mRNA to prevent its nuclear export and suppress virus replication.
View Article and Find Full Text PDFThe promoter of the telomerase catalytic subunit (TERT) is subject to tight regulation and remains repressed in somatic cells to ensure their limited life span and to prevent tumor initiation. Here we report that the hTERT promoter is strongly repressed by p53 and the related family members p63 and p73. We found that p53-mediated repression was different in human and mouse cells and occurred through p53-dependent transcription inhibition of c-Myc or through E-box/E2F pathways, respectively.
View Article and Find Full Text PDFDisease development in human T-cell leukemia virus type 1 (HTLV-1)-infected individuals is positively correlated with the level of integrated viral DNA in T cells. HTLV-1 replication is positively regulated by Tax and Rex and negatively regulated by the p30 and HBZ proteins. In the present study, we demonstrate that HTLV-1 encodes another negative regulator of virus expression, the p13 protein.
View Article and Find Full Text PDFHuman T-cell leukemia virus type I (HTLV-I)-associated malignancies are seen in a small percentage of infected persons. Although in vitro immortalization by HTLV-I virus is very efficient, we report that Tax has poor oncogenic activity in human primary T cells and that immortalization by Tax is rare. Sustained telomerase activity represents one of the oncogenic steps required for Tax-mediated immortalization.
View Article and Find Full Text PDFHuman T-cell leukemia virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia (ATL), an aggressive lymphoproliferative disease. MicroRNAs (miRNAs) are differentially expressed during hematopoiesis and lineage commitment of hematopoietic stem cell progenitors (HSCPs). Here, we report aberrant expression of hematopoietic-specific miR-223, miR-181a, miR-150, miR-142.
View Article and Find Full Text PDFHuman retroviruses are associated with a variety of malignancies including Kaposi's sarcoma and Epstein-Barr virus-associated lymphoma in HIV infection, T-cell leukemia/lymphoma and a neurologic disorder in human T-cell lymphotropic virus type 1 (HTLV-1) infection. Both HIV and human T-cell lymphotropic virus type 1 have evolved a complex genetic organization for optimal use of their limited genome and production of all necessary structural and regulatory proteins. Use of alternative splicing is essential for balanced expression of multiple viral regulators from one genomic polycistronic RNA.
View Article and Find Full Text PDF