Photoinduced molecular rearrangements are important in daily events essential for life such as visual perception and photo-protection of light harvesting complexes in plants. In this study we demonstrate that similar photoarrangements appear in an analogous technological application where the device performance is controlled by chromophores in sensitized anatase TiO(2), one of the main components for light-harvesting in dye-sensitized solar cells (DSC). STM reveals that illumination leads to distortions of organic dyes containing conjugated backbones and of cis-bis(isothiocyanate)-bis-(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)-bis(tetrabutylammonium), known as N719.
View Article and Find Full Text PDFThe fast development of new organic sensitizers leads to the need for a better understanding of the complexity and significance of their adsorption processes on TiO(2) surfaces. We have investigated a prototype of the triphenylamine-cyanoacrylic acid (donor-acceptor) on rutile TiO(2) (110) surface with special attention on the monolayer region. This molecule belongs to the type of dye, some of which so far has delivered the record efficiency of 10%-10.
View Article and Find Full Text PDFWe report experimental results concerning the STM imaging of cis-bis (isothiocyanate)-bis-(2,2'-bipyridyl-4,4'dicarboxylate)ruthenium(II)bis(tetrabutylammonium) dye (known as N719) adsorbed on a single crystal of anatase TiO(2)(100). The cleaning pretreatment, by sputtering and annealing, of TiO(2)(100) yields a reproducible (1 x n) surface reconstruction. Previous to dye deposition, TiO(2) was covered with one monolayer of 4-tert-butylpyridine (4-TBP) in ultrahigh vacuum (UHV) in order to protect the surface against air contamination.
View Article and Find Full Text PDF