Publications by authors named "Marcelo Zaiat"

Vinasse, a by-product of ethanol production, is generated at significant rates. While rich in nutrients such as calcium, magnesium, and potassium, its high solids, organic matter, acidity, and sulfate content pose challenges when disposed directly on soil, necessitating treatment. Anaerobic digestion is a viable solution, reducing organic pollution while recovering energy in the form of biogas, aligning with the biorefinery concept.

View Article and Find Full Text PDF

Vinasse is a by-product of sugarcane processing which is often used in fertigation; however, the direct use of vinasse harms the environment and reduces soil productivity due to its physicochemical properties. Anaerobic digestion (AD) offers an alternative to mitigate part of the negative effects. Anaerobic high-rate reactors, which mainly rely on sludge granulation, are mostly used in AD of vinasse wastewater.

View Article and Find Full Text PDF

Anaerobic digestion of fruit and vegetable waste (FVW) offers an environmentally friendly alternative for waste disposal, converting it into methane for energy recovery. Typically, FVW digestion is conducted in a continuously stirred tank reactor (CSTR) due to its ease of use and stability with solid concentrations between 5 and 10%. However, CSTRs are limited to organic loading rates (OLRs) of about 3 kg COD/m.

View Article and Find Full Text PDF

Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies.

View Article and Find Full Text PDF

Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%).

View Article and Find Full Text PDF

Antibiotics from sulfonamide, fluoroquinolone, and diaminopyrimidine classes are widely used in human and veterinary medicine, and their combined occurrence in the aquatic environment is increasing around the world. In parallel, the understanding of how mixtures of these compounds affect non-target species from tropical freshwaters is scarce. Thus, this work aimed to study the long-term reproductive, recovery, and swimming effects of mixtures of 12 antibiotics from three different classes (up to 10 μg L ) added to freshwater (FWM) and synthetic wastewater (SWM) matrices on freshwater worm Allonais inaequalis.

View Article and Find Full Text PDF

Improving anaerobic digestion of sugarcane vinasse - a high-strength wastewater from ethanol distillation - is a subject of great interest, in view of the reduction of the pollutants and recovery of methane and valuable metabolites as byproducts. Through metatranscriptomic analysis, this study evaluated the active microbiome and metabolic pathways in a continuous acidogenic reactor: Stage 1S (control): 100% sucrose-based substrate (SBS); Stage 2SV (acclimation): 50% SBS and 50% vinasse; Stage 3V: 100% vinasse. Metatranscriptome obtained from each Stage was subjected to taxonomic and functional annotations.

View Article and Find Full Text PDF

The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment.

View Article and Find Full Text PDF

This investigation provides a reproducible approach for determining the limits of an upflow anaerobic sludge blanket (UASB) reactor designed for the methanization of the liquid fraction of fruit and vegetable waste (FVW). Two identical mesophilic UASB reactors were operated for 240 days with a three-day fixed hydraulic retention time and an organic load rate (OLR) increased from 1.8 to 10 gCOD L d.

View Article and Find Full Text PDF

The effects of toxic substance in soil matrices are evaluated by assessing adult worm survival and reproduction. Throughout the test, hundreds of juvenile potworms can be found. The current method for Enchytraeus crypticus quantification in soil samples is a laborious and time-consuming procedure that involves manual counting.

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified.

View Article and Find Full Text PDF

The depletion of primary ores, the environmental concerns related to mining activities, and the need to promote circular economy has drawn attention to the recycling of metallic compounds. Bio-based technologies are suitable for metal recovery, as they operate under mild conditions (ambient temperature and pressure) and are ideal for treating low-concentration waters. This study compared the effectiveness of adsorption and precipitation for the removal and recovery of gallium, germanium and zinc.

View Article and Find Full Text PDF

The organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, MR), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR + MR), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.

View Article and Find Full Text PDF

Anaerobic digestion (AD) is a complex biological process widely used to decompose various types of organic matter, as well as to produce some metabolites and biogas. Diverse microorganism groups cooperate in many intricate metabolic routes so that organic matter can be degraded. However, any imbalance on these routes can lead to process instability or even failure.

View Article and Find Full Text PDF

BioH production from cheese whey (CW) was evaluated in two acidogenic reactors, UASB and structured fixed-bed (FB), without pH adjustment, under mesophilic conditions, and OLR of 25-90 g COD/L.d. Stage 1 was conducted as a control experiment using sucrose.

View Article and Find Full Text PDF

The occurrence of brominated flame retardants such as Tetrabromobisphenol A (TBBPA) in water bodies poses a serious threat to aquatic ecosystems. Degradation of TBBPA in wastewater has successfully been demonstrated to occur through anaerobic digestion (AD), although the involved microorganisms and the conditions favouring the conversion remains unclear. In this study, it was observed that bioconversion of TBBPA did not occur during the hydrolytic stage of the AD, but during the strictly fermentative stage.

View Article and Find Full Text PDF

Soil toxicity tests are commonly applied using Enchytraeus crypticus to analyze reproductive outputs. However, the traditional method for counting potworms takes a long time due to the significant number of offspring. This paper compares the conventional total counting of E.

View Article and Find Full Text PDF

Methanogenesis involves several enzymes with trace metal components that catalyze major metabolic pathways and, therefore, requires a sufficient supply of micronutrients such as iron, nickel or cobalt. The statistically-based Plackett-Burman experimental design was adopted in this study to identify which trace metal have a statistically significant effect on the maximum methane production from domestic sewage. The addition of Barium (Ba), Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Selenium (Se) was tested in batch reactors using domestic sewage as the substrate and sewage sludge as the inoculum.

View Article and Find Full Text PDF

This is the first study to bring evidence on the anaerobic biodegradation of TBBPA occurring during acidogenesis in domestic sewage at environmentally relevant concentrations by complex microbial communities. This was accomplished by continuously operating two anaerobic structured bed reactors (ASTBR) for over 100 days under acidogenic (Acidogenic Reactor, AR) and multistep methanogenic (Methanogenic Reactor, MR) conditions. In the AR, the temporal carbohydrates consumption and the acetic acid production were strongly correlated with TBBPA removal by the Pearson's test.

View Article and Find Full Text PDF

The high temperature in which sugarcane vinasse (SV) is generated (~ 90 °C) and the positive effect of higher temperatures in biochemical reactions have motivated the evaluation of SV anaerobic digestion (AD) under extreme temperature conditions. Two-stage (acidogenic/methanogenic) and single-stage (methanogenic) AD of SV were evaluated under 70 °C in structured-bed reactors. The extreme temperature was beneficial to the acidogenic step of the two-stage AD process.

View Article and Find Full Text PDF
Article Synopsis
  • Anaerobic digestion can treat antibiotic-contaminated wastewaters, but its effectiveness varies based on the specific chemical characteristics of the compounds and operational conditions of the reactor.
  • A mathematical model was created to represent 16 metabolic pathways for treating wastewater contaminated with sulfamethazine, using Contois kinetics to assess biomass concentration and its impact on bed porosity.
  • The study evaluated two hypotheses for sulfamethazine degradation and found that effective removal was linked to the consumption of carbohydrates and proteins, while higher acetic acid production negatively affected degradation performance.
View Article and Find Full Text PDF

Sulfide produced by sulphate-reducing bacteria in anaerobic reactors can seriously affect biogas quality. Microaeration has become a reliable way to remove sulfide, by promoting its oxidation. However, limited research is available regarding its application in upflow anaerobic sludge bed (UASB) reactors.

View Article and Find Full Text PDF

Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.

View Article and Find Full Text PDF

An accurate and sensitive ultrasound-dispersive liquid-liquid microextraction technique followed by high-performance liquid chromatography separation coupled with electrospray ionization tandem mass spectrometry detection method to determine the presence of tetrabromobisphenol A (TBBPA) in complex environmental matrices is proposed. The miniaturized procedure was used to extract and quantify the analyte in domestic sewage, anaerobic sludge, and the aquatic test organism species Daphnia magna and Chironomus sancticaroli, which are standardized organisms for ecotoxicity bioassays. Limits of detection of 2 ng L (domestic sewage), 2 ng g (anaerobic sludge), 0.

View Article and Find Full Text PDF

There is a consensus among scientists that domestic sewage treatment plants are the main sources of drugs entry into the aquatic environment. Therefore, this work studies the biodegradation of the drugs ranitidine (RNT), diclofenac (DCF), and simvastatin (SVT) (50 μg L, each), in real domestic sewage, using a continuous anaerobic-aerobic reactor with immobilized biomass and an anaerobic batch reactor. The continuous anaerobic-aerobic reactor was operated for 6 months with hydraulic retention time (HRT) of 8 h.

View Article and Find Full Text PDF