Previous studies have suggested that transcranial direct current stimulation (tDCS) might improve exercise performance and alter psychophysiological responses to exercise. However, it is presently unknown whether this simple technique has similar (or greater) effects on running performance. The purpose of this study was, therefore, to test the hypothesis that, compared with sham and cathodal tDCS, anodal tDCS applied over the M1 region would attenuate perception of effort, improve affective valence, and enhance exercise tolerance, regardless of changes in physiological responses, during maximal incremental exercise.
View Article and Find Full Text PDFThe central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance.
View Article and Find Full Text PDFBackground: The objective of this study was to analyze the effect of caffeine ingestion on the performance and physiological variables associated with fatigue in 20-km cycling time trials.
Methods: In a double-blind placebo-controlled crossover study, 13 male cyclists (26 ± 10 y, 71 ± 9 kg, 176 ± 6 cm) were randomized into 2 groups and received caffeine (CAF) capsules (6 mg.kg(-1)) or placebo (PLA) 60 min before performing 20-km time trials.