The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs.
View Article and Find Full Text PDFThe phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues.
View Article and Find Full Text PDFPest Manag Sci
October 2023
Background: Resistance to 2,4-Dichlorophenoxyacetic acid (2,4-D) has been reported in several weed species since the 1950s; however, a biotype of Conyza sumatrensis showing a novel physiology of the rapid response minutes after herbicide application was reported in 2017. The objective of this research was to investigate the mechanisms of resistance and identify transcripts associated with the rapid physiological response of C. sumatrensis to 2,4-D herbicide.
View Article and Find Full Text PDFA 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5--d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'--malonyl)-5--d-glucopyranoside.
View Article and Find Full Text PDFTrends Biochem Sci
October 2022
The plant hormone auxin acts through regulated degradation of Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins to regulate transcriptional events. In this review, we examine the composition and function of each Aux/IAA structural motif. We then focus on recent characterization of Aux/IAA N-terminal disordered regions, formation of secondary structure within these disordered regions, and post-translational modifications (PTMs) that affect Aux/IAA function and stability.
View Article and Find Full Text PDFSynthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCF, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway.
View Article and Find Full Text PDF