Metagenomics has provided the discovery of genes and metabolic pathways involved in the degradation of xenobiotics. Some microorganisms can metabolize these compounds, potentiating phytoremediation in association with plant. This study aimed to study the metagenome and the occurrence of atrazine degradation genes in rhizospheric soils of the phytoremediation species Inga striata and Caesalphinea ferrea.
View Article and Find Full Text PDFThe 2,4-D (2,4-dichlorophenoxyacetic acid) has low half-life in the soil, but it is capable of altering the soil microbial community. The objective of this study was to evaluate the influence of 2,4-D residues on the structure of the soil microbial community and the growth of tree species. The tolerance and phytoremediation potential of tree species were evaluated.
View Article and Find Full Text PDFThe type IV secretion system (T4SS) is used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Xanthomonas citri subsp. citri contains two copies of the T4SS, one in the chromosome and the other is plasmid-encoded.
View Article and Find Full Text PDF