Publications by authors named "Marcelo Lozada-Hidalgo"

Article Synopsis
  • - Two-dimensional (2D) crystals are promising materials for proton conduction, as they can selectively allow protons to pass while blocking larger atoms and molecules.
  • - Research shows that vacancy-rich titania monolayers demonstrate high proton conductivity, exceeding 100 S/cm at 200°C, while preventing helium permeability, meeting industry benchmarks.
  • - The exceptional proton transport in these monolayers is due to a high density of titanium vacancies, which enables them to function like ultra-fine sieves, indicating their potential for hydrogen technology applications.
View Article and Find Full Text PDF

Recent experiments demonstrated that interfacial water dissociation (HO ⇆ H + OH) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields.

View Article and Find Full Text PDF

The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas.

View Article and Find Full Text PDF

Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment.

View Article and Find Full Text PDF

Recent experiments have demonstrated transport and separation of hydrogen isotopes through the van der Waals gap in hexagonal boron nitride and molybdenum disulfide bulk layered materials. However, the experiments cannot distinguish if the transported particles are protons (H ) or protium (H) atoms. Here, reported are the theoretical studies, which indicate that protium atoms, rather than protons, are transported through the gap.

View Article and Find Full Text PDF

Graphene has recently been shown to be permeable to thermal protons , the nuclei of hydrogen atoms, which sparked interest in its use as a proton-conducting membrane in relevant technologies. However, the influence of light on proton permeation remains unknown. Here we report that proton transport through Pt-nanoparticle-decorated graphene can be enhanced strongly by illuminating it with visible light.

View Article and Find Full Text PDF