Publications by authors named "Marcelo Guerin"

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor.

View Article and Find Full Text PDF

Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane.

View Article and Find Full Text PDF

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987.

View Article and Find Full Text PDF

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans.

View Article and Find Full Text PDF

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important amongst these are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are both trafficked out of the bacterium to the host via unknown mechanisms. An important class of exported LM/LAM is the capsular derivative of these molecules which is devoid of its lipid anchor.

View Article and Find Full Text PDF

We report on the existence of two phosphatidic acid biosynthetic pathways in mycobacteria, a classical one wherein the acylation of the sn-1 position of glycerol-3-phosphate (G3P) precedes that of sn-2 and another wherein acylations proceed in the reverse order. Two unique acyltransferases, PlsM and PlsB2, participate in both pathways and hold the key to the unusual positional distribution of acyl chains typifying mycobacterial glycerolipids wherein unsaturated substituents principally esterify position sn-1 and palmitoyl principally occupies position sn-2. While PlsM selectively transfers a palmitoyl chain to the sn-2 position of G3P and sn-1-lysophosphatidic acid (LPA), PlsB2 preferentially transfers a stearoyl or oleoyl chain to the sn-1 position of G3P and an oleyl chain to sn-2-LPA.

View Article and Find Full Text PDF

Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus , including , the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs.

View Article and Find Full Text PDF

Glycosyltransferases (GTs) attach sugar molecules to a broad range of acceptors, generating a remarkable amount of structural diversity in biological systems. GTs are classified as either "retaining" or "inverting" enzymes. Most retaining GTs typically use an Si mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Antibody-based drugs, especially IgG monoclonal antibodies, are widely used to treat various diseases such as cancer and autoimmune disorders, owing to their specialized therapeutic properties.
  • The efficacy and functionality of IgG antibodies are influenced by specific modifications in their sugar structures (glycoforms), which affect how they interact with other cells and proteins in the body.
  • To improve the effectiveness of these antibodies, researchers are exploring advanced engineering methods to create antibodies with customized glycoforms through techniques like using engineered cell lines and glycoengineering approaches.
View Article and Find Full Text PDF

Bacterial capsules have critical roles in host-pathogen interactions. They provide a protective envelope against host recognition, leading to immune evasion and bacterial survival. Here we define the capsule biosynthesis pathway of Haemophilus influenzae serotype b (Hib), a Gram-negative bacterium that causes severe infections in infants and children.

View Article and Find Full Text PDF

Glycosylation is a common posttranslational modification of proteins and refers to the covalent addition of glycans, chains of polysaccharides, onto proteins producing glycoproteins. The glycans influence the structure, function, and stability of proteins. They also play an integral role in the immune system, and aberrantly glycosylated proteins have wide ranging effects, including leading to diseases such as autoimmune conditions and cancer.

View Article and Find Full Text PDF

Red blood cell antigens play critical roles in blood transfusion since donor incompatibilities can be lethal. Recipients with the rare total deficiency in H antigen, the O Bombay phenotype, can only be transfused with group O blood to avoid serious transfusion reactions. We discover FucOB from the mucin-degrading bacteria Akkermansia muciniphila as an α-1,2-fucosidase able to hydrolyze Type I, Type II, Type III and Type V H antigens to obtain the afucosylated Bombay phenotype in vitro.

View Article and Find Full Text PDF

Bacterial pathogens have evolved intricate mechanisms to evade the human immune system, including the production of immunomodulatory enzymes. Streptococcus pyogenes serotypes secrete two multi-modular endo-β-N-acetylglucosaminidases, EndoS and EndoS2, that specifically deglycosylate the conserved N-glycan at Asn297 on IgG Fc, disabling antibody-mediated effector functions. Amongst thousands of known carbohydrate-active enzymes, EndoS and EndoS2 represent just a handful of enzymes that are specific to the protein portion of the glycoprotein substrate, not just the glycan component.

View Article and Find Full Text PDF

The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M.

View Article and Find Full Text PDF

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum.

View Article and Find Full Text PDF

Bacteria produce a remarkably diverse range of glycoside hydrolases to metabolize glycans from the environment as a primary source of nutrients, and to promote the colonization and infection of a host. Here we focus on EndoE, a multi-modular glycoside hydrolase secreted by Enterococcus faecalis, one of the leading causes of healthcare-associated infections. We provide X-ray crystal structures of EndoE, which show an architecture composed of four domains, including GH18 and GH20 glycoside hydrolases connected by two consecutive three α-helical bundles.

View Article and Find Full Text PDF

Immunoglobulin G (IgG) monoclonal antibodies are a prominent and expanding class of therapeutics used for the treatment of diverse human disorders. The chemical composition of the N-glycan on the fragment crystallizable (Fc) region determines the effector functions through interaction with the Fc gamma receptors and complement proteins. The chemoenzymatic synthesis using endo-β-N-acetylglucosaminidases (ENGases) emerged as a strategy to obtain antibodies with customized glycoforms that modulate their therapeutic activity.

View Article and Find Full Text PDF

Glycolipids are prominent components of bacterial membranes that play critical roles not only in maintaining the structural integrity of the cell but also in modulating host-pathogen interactions. PatA is an essential acyltransferase involved in the biosynthesis of phosphatidyl--inositol mannosides (PIMs), key structural elements and virulence factors of . We demonstrate by electron spin resonance spectroscopy and surface plasmon resonance that PatA is an integral membrane acyltransferase tightly anchored to anionic lipid bilayers, using a two-helix structural motif and electrostatic interactions.

View Article and Find Full Text PDF

N-glycosylation is one of the most abundant posttranslational modifications of proteins, essential for many physiological processes, including protein folding, protein stability, oligomerization and aggregation, and molecular recognition events. Defects in the N-glycosylation pathway cause diseases that are classified as congenital disorders of glycosylation. The ability to manipulate protein N-glycosylation is critical not only to our fundamental understanding of biology but also for the development of new drugs for a wide range of human diseases.

View Article and Find Full Text PDF

comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl--inositol mannosides (PIMs) are glycolipids considered to be not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane-associated acyltransferase that transfers a palmitoyl moiety from palmitoyl coenzyme A (palmitoyl-CoA) to the 6-position of the mannose ring linked to the 2-position of inositol in PIM/PIM We validate that the function of PatA is vital for and We constructed a conditional mutant and showed that silencing is bactericidal in batch cultures.

View Article and Find Full Text PDF

Akkermansia muciniphila is a mucin-degrading bacterium commonly found in the human gut that promotes a beneficial effect on health, likely based on the regulation of mucus thickness and gut barrier integrity, but also on the modulation of the immune system. In this work, we focus in OgpA from A. muciniphila, an O-glycopeptidase that exclusively hydrolyzes the peptide bond N-terminal to serine or threonine residues substituted with an O-glycan.

View Article and Find Full Text PDF

The phosphatidyl--inositol mannosyltransferase A (PimA) is an essential peripheral membrane glycosyltransferase that initiates the biosynthetic pathway of phosphatidyl--inositol mannosides (PIMs), key structural elements and virulence factors of . PimA undergoes functionally important conformational changes, including (i) α-helix-to-β-strand and β-strand-to-α-helix transitions and (ii) an "open-to-closed" motion between the two Rossmann-fold domains, a conformational change that is necessary to generate a catalytically competent active site. In previous work, we established that GDP-Man and GDP stabilize the enzyme and facilitate the switch to a more compact active state.

View Article and Find Full Text PDF

Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix-to-β-strand and β-strand-to-α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria.

View Article and Find Full Text PDF