The use of C-type natriuretic peptide (CNP) in the interaction with the oocyte and in the temporary postponement of spontaneous meiosis resumption has already been well described. However, its action in pre-implantation developmental-stage embryos is yet to be understood. Thus, our study aimed to detect the presence of the canonical CNP receptor (natriuretic peptide receptor, NPR2) in germinal vesicle (GV)-, metaphase II (MII)-, presumptive zygote (PZ)-, morula (MO)-, and blastocyst (BL)-stage embryos and, later, to observe possible modulations on the embryos when co-cultured with CNP.
View Article and Find Full Text PDFThis study examines the impact of oxygen tension and embryo kinetics on gene transcription dynamics in pathways crucial for embryonic preimplantation development, including lipid metabolism, carbohydrate transport and metabolism, mitochondrial function, stress response, apoptosis and transcription regulation. Bovine embryos were generated in vitro and allocated into two groups based on oxygen tension (20% or 5%) at 18 h post insemination (hpi). At 40 hpi, embryos were categorized into Fast (≥4 cells) or Slow (2 cells) groups, resulting in four experimental groups: FCL20, FCL5, SCL20 and SCL5.
View Article and Find Full Text PDFThoroughly analyzing the sperm and exploring the information obtained using artificial intelligence (AI) could be the key to improving fertility estimation. Artificial neural networks have already been applied to calculate zootechnical indices in animals and predict fertility in humans. This method of estimating the results of reproductive biotechnologies, such as embryo production (IVEP) in cattle, could be valuable for livestock production.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
During embryo development, the endoplasmic reticulum (ER) acts as an important site for protein biosynthesis; however, in vitro culture (IVC) can negatively affect ER homeostasis. Therefore, the aim of our study was to evaluate the effects of the supplementation of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, in the IVC of bovine embryos. Two experiments were carried out: Exp.
View Article and Find Full Text PDFTheriogenology
August 2023
Early embryonic mortality caused by maternal-fetal recognition failure in the three weeks after fertilization represents a major cause of reproductive inefficiency in the cattle industry. Modifying the amounts and ratios of prostaglandin (PG) F and PGE can benefit the establishment of pregnancy in cattle. Adding conjugated linoleic acid (CLA) to endometrial and fetal cells culture affects PG synthesis, but its effect on bovine trophoblast cells (CT-1) is unknown.
View Article and Find Full Text PDFTheriogenology
July 2023
Supplementation of culture media with IGF-1 during in vitro culture of embryos has had controversial results over the years. In the present study, we show that differences previously observed in response to IGF addition might be related to intrinsic heterogeneity of the embryos. In other words, the effects exerted by IGF-1 are dependent on the characteristics of the embryos and their ability to modulate metabolism and overcome stressful conditions, such as the ones found in a non-optimized in vitro culture system.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2022
Several opportunities for embryo development, stem cell maintenance, cell fate, and differentiation have emerged using induced pluripotent stem cells (iPSCs). However, the difficulty in comparing bovine iPSCs (biPSCs) with embryonic stem cells (ESCs) was a challenge for many years. Here, we reprogrammed fetal fibroblasts by transient expression of the four transcription factors (Oct4, Sox2, Klf4, and c-Myc, collectively termed "OSKM" factors) and cultured in iPSC medium, supplemented with bFGF, bFGF2i, leukemia inhibitory factor (LIF), or LIF2i, and then compared these biPSC lines with bESC to evaluate the pluripotent state.
View Article and Find Full Text PDFGiant unilamellar vesicles (GUVs) are composed of lipophilic layers and are sensitive to the action of reactive oxygen species (ROS). The use of GUVs as microcarriers of biological macromolecules is particularly interesting since ROS produced by gametes or embryos during in vitro culture can induce the opening of pores in the membrane of these vesicles and cause the release of their content. This study investigated the behavior of GUVs [composed of 2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)] in co-culture with in vitro produced bovine embryos, as well as their embryotoxicity and effectiveness as cysteine carriers in culture medium.
View Article and Find Full Text PDFThe event of cellular reprogramming into pluripotency is influenced by several factors, such as in vitro culture conditions (e.g., culture medium and oxygen concentration).
View Article and Find Full Text PDFFront Cell Dev Biol
February 2021
In several species, oocyte and embryo competence are improved by the addition of endoplasmic reticulum (ER) stress inhibitors to maturation (IVM) medium and/or culture (IVC) medium. This study aimed to evaluate the effects of three concentrations of tauroursodeoxycholic acid (TUDCA; 50, 200, and 1,000 μM), a chemical chaperone for relieving ER stress, during IVM of bovine cumulus-oocyte complexes (COCs) for 24 h. Treated oocytes were analyzed for nuclear maturation, reactive oxygen species (ROS) production, mitochondrial activity, and abundance of target transcripts.
View Article and Find Full Text PDFResearch Question: The study aimed to develop an artificial intelligence model based on artificial neural networks (ANNs) to predict the likelihood of achieving a live birth using the proteomic profile of spent culture media and blastocyst morphology.
Design: This retrospective cohort study included 212 patients who underwent single blastocyst transfer at IVI Valencia. A single image of each of 186 embryos was studied, and the protein profile was analysed in 81 samples of spent embryo culture medium from patients included in the preimplantation genetic testing programme.
Sci Rep
November 2020
We evaluated the effect of the antral follicle count (AFC) on ovarian follicular dynamics, pregnancy rates, progesterone concentrations, and transcriptional patterns of genes in Nelore cattle (Bos taurus indicus) after a timed artificial insemination (TAI) programme. Cows were separated based on the AFC, and those with a high AFC showed a larger (P < 0.0001) ovarian diameter and area than those with a very low AFC.
View Article and Find Full Text PDFThe cryosurvival of embryos is a complex process involving dynamic and integrated morphological, functional, and molecular changes. Here, we evaluated the transcriptional profiling of bovine embryos possessing high and low cryotolerance (HC and LC, respectively) by assessing the resumption of development. Embryos were produced in vitro (N = 1137) and cryopreserved (N = 894).
View Article and Find Full Text PDFPrevious studies have discussed the importance of an optimal range of metabolic activity during preimplantation development. To avoid factors than can trigger an undesirable trajectory, it is important to learn how nutrients and metabolites interact to help launching the correct developmental program of the embryo, and how much the in vitro culture system can impair this process. Here, using the bovine model, we describe a factorial experimental design used to investigate the biochemical and molecular signature of embryos in response to different combinations of morphological features-i.
View Article and Find Full Text PDFIn many cell types, epigenetic changes are partially regulated by the availability of metabolites involved in the activity of chromatin-modifying enzymes. Even so, the association between metabolism and the typical epigenetic reprogramming that occurs during preimplantation embryo development remains poorly understood. In this work, we explore the link between energy metabolism, more specifically the tricarboxylic acid cycle (TCA), and epigenetic regulation in bovine preimplantation embryos.
View Article and Find Full Text PDFC-type natriuretic peptide (CNP) and its natriuretic peptide receptors subtype 2 (NPR2) are essential for the maintenance of oocyte meiotic arrest in different species. Extracellular vesicles (EVs) in bovine follicular fluid (FF) are important for cell communication within the ovarian follicle. This study investigated the involvement of EVs from FF of bovine ovarian follicles in the CNP-NPR2 system, first by analyzing the presence of CNP in the EV contents, followed by addition of EVs to in-vitro maturation (IVM) medium, to evaluate the effect on maintenance of oocyte meiosis arrest and improvements in in-vitro embryo production.
View Article and Find Full Text PDFAutophagy is a physiological mechanism that can be activated under stress conditions. However, the role of autophagy during oocyte maturation has been poorly investigated. Therefore, this study characterized the role of autophagy on developmental competence and gene expression of bovine oocytes exposed to heat shock (HS).
View Article and Find Full Text PDFAnimals (Basel)
July 2020
Reproductive efficiency plays a major role in the long-term sustainability of livestock industries and can be improved through genetic and genomic selection. This study aimed to estimate genetic parameters (heritability and genetic correlation) and identify genomic regions and candidate genes associated with anti-Müllerian hormone levels (AMH) and antral follicle populations measured after estrous synchronization (AFP) in Nellore cattle. The datasets included phenotypic records for 1099 and 289 Nellore females for AFP and AMH, respectively, high-density single nucleotide polymorphism (SNP) genotypes for 944 animals, and 4129 individuals in the pedigree.
View Article and Find Full Text PDFJ Assist Reprod Genet
October 2020
Over the past years, the assisted reproductive technologies (ARTs) have been accompanied by constant innovations. For instance, intracytoplasmic sperm injection (ICSI), time-lapse monitoring of the embryonic morphokinetics, and PGS are innovative techniques that increased the success of the ART. In the same trend, the use of artificial intelligence (AI) techniques is being intensively researched whether in the embryo or spermatozoa selection.
View Article and Find Full Text PDFBased on growing demand for assisted reproduction technology, improved predictive models are required to optimize in vitro fertilization/intracytoplasmatic sperm injection strategies, prioritizing single embryo transfer. There are still several obstacles to overcome for the purpose of improving assisted reproductive success, such as intra- and inter-observer subjectivity in embryonic selection, high occurrence of multiple pregnancies, maternal and neonatal complications. Here, we compare studies that used several variables that impact the success of assisted reproduction, such as blastocyst morphology and morphokinetic aspects of embryo development as well as characteristics of the patients submitted to assisted reproduction, in order to predict embryo quality, implantation or live birth.
View Article and Find Full Text PDFSample types such as those from reproductive systems often yield scarce material, which limits RT-qPCR analysis to only a few targets. Recently developed high-throughput systems can potentially change this scenario, however, the nanoliter scale of such platforms requires extra processing, e.g.
View Article and Find Full Text PDFMol Reprod Dev
November 2019
Insulin-like growth factor 1 (IGF-1) activity is established by the regulation of IGF binding protein activity, which blocks IGF-1 functions, whereas pregnancy-associated plasma protein-A (PAPP-A) improves IGF-1 bioavailability and facilitates binding to IGF receptors. To further extend our understanding of the effect of exogenous PAPP-A on bovine embryo production, we added this protein during in vitro maturation of cumulus-oocyte complexes (COCs); moreover, we assessed its effects on IGF-1 quantity in the maturation medium, embryonic yield and postwarming survival, blastocyst quality, and transcript abundance. Bovine COCs were matured in a serum-free medium, either with PAPP-A supplementation (100 ng/ml) or without (control).
View Article and Find Full Text PDFMol Reprod Dev
November 2019
Studies have shown that the use of equine chorionic gonadotropin (eCG), which binds both follicle stimulating hormone (FSH) and luteinizing hormone (LH) receptors, could modify the female reproductive tract. We, thus, aimed to quantify the messenger RNA (mRNA) abundance of genes related to cumulus-oocyte complexes (COCs) and embryo quality in Nelore cows (Bos taurus indicus) submitted to ovarian superstimulation using only FSH (FSH group; n = 10) or replacement of the last two doses of FSH by eCG (FSH/eCG group; n = 10). All animals were slaughtered and the ovarian antral follicles from both groups (10-14 mm in diameter) were aspirated for cumulus, oocyte and in vitro embryo production gene expression analysis.
View Article and Find Full Text PDFPLoS One
March 2020
In this study, we evaluated the modulation effect of long-chain Acyl-CoA synthetase during early embryo development. Bovine embryos were cultured in four groups: positive modulation (ACS+) with GW3965 hydrochloride, negative modulation (ACS-) with Triacsin C, association of both modulators (ACS±), and control. Embryo development rates were not altered (P>0.
View Article and Find Full Text PDFPurpose: Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire their ability to become fertilized and support embryonic development. The oocyte is apparently "primed" for maturation during its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to acquire improved developmental competence.
View Article and Find Full Text PDF