The objective of this study was to characterize the genetic divergence and selection gains of the physicochemical grains traits of 68 genotypes of most cultivated in the Western Amazon. For this purpose, the following characteristics were evaluated over two harvests: aqueous extract, ash, acidity, pH, protein, ether extract, soluble solids, phenolic compounds, soluble sugars, reducing sugars, and non-reducing sugars. The genotype × measurement interaction effect was significant for all characteristics, with a predominant simple interaction, resulting in smaller changes in the ranking of genotypes.
View Article and Find Full Text PDFThe simultaneous analysis of the maximum number of chemical elements present in plant tissues provides more comprehensive information about their chemical constitution and increases the number of characteristics for the selection process in various plant breeding programs. The objective of this study was to analyze productivity, grain yield, and concentration of chemical elements in tissues of clones to study phenotypic diversity and estimate genetic parameters for use in breeding. This experiment was carried out in Manaus, Amazonas, Brazil, in randomized blocks with four replications.
View Article and Find Full Text PDFCoffee genotypes cultivated in the Amazonian region have been gaining increasing prominence in Brazilian plantations. This study aimed to quantify nutrient accumulation in the fruits, grains, and husks of Robusta coffee genotypes cultivated in the Brazilian Amazon and estimate genetic diversity. The experiment was conducted in Alta Floresta D'Oeste-Rondônia, Brazil.
View Article and Find Full Text PDFPlant Cell Environ
March 2023
The increase in frequency and intensity of drought events have hampered coffee production in the already threatened Amazon region, yet little is known about key aspects underlying the variability in yield potential across genotypes, nor to what extent higher productivity is linked to reduced drought tolerance. Here we explored how variations in morphoanatomical and physiological leaf traits can explain differences in yield and vulnerability to embolism in 11 Coffea canephora genotypes cultivated in the Western Amazon. The remarkable variation in coffee yield across genotypes was tightly related to differences in their carbon assimilation and water transport capacities, revealing a diffusive limitation to photosynthesis linked by hydraulic constraints.
View Article and Find Full Text PDF