Our research aimed to elucidate the mechanism by which aurintricarboxylic acid (ATA) inhibits plasma membrane Ca-ATPase (PMCA), a crucial enzyme responsible for calcium transport. Given the pivotal role of PMCA in cellular calcium homeostasis, understanding how it is inhibited by ATA holds significant implications for potentially regulating physiopathological cellular processes in which this pump is involved. Our experimental findings revealed that ATA employs multiple modes of action to inhibit PMCA activity, which are influenced by ATP but also by the presence of calcium and magnesium ions.
View Article and Find Full Text PDFThe activation of the muscular nicotinic acetylcholine receptor (nAChR) produces the opening of the channel, with the consequent increase in the permeability of cations, triggering an excitatory signal. Free fatty acids (FFA) are known to modulate the activity of the receptor as noncompetitive antagonists, acting at the membrane-AChR interface. We present molecular dynamics simulations of a model of nAChR in a desensitized closed state embedded in a lipid bilayer in which distinct membrane phospholipids were replaced by two different monounsaturated FFA that differ in the position of a double bond.
View Article and Find Full Text PDFCholinergic deficit is a characteristic factor of several pathologies, such as myasthenia gravis, some types of congenital myasthenic syndromes, and Alzheimer's Disease. Two molecular targets for its treatment are acetylcholinesterase (AChE) and nicotinic acetylcholine receptor (nAChR). In previous studies, we found that caffeine behaves as a partial nAChR agonist and confirmed that it inhibits AChE.
View Article and Find Full Text PDFThe 33-mer gliadin peptide and its deamidated metabolite, 33-mer DGP, are the immunodominant peptides responsible for the adaptive immune response in celiac disease (CD). CD is a complex autoimmune chronic disorder triggered by gluten ingestion that affects the small intestine and affects ∼1% of the global population. The 33-mers are polyproline II-rich (PPII) and intrinsically disordered peptides (IDPs), whose structures remain elusive.
View Article and Find Full Text PDFGluten related-disorders have a prevalence of 1-5 % worldwide triggered by the ingestion of gluten proteins in wheat, rye, barley, and some oats. In wheat gluten, the most studied protein is gliadin, whose immunodominant 33-mer amino acid fragment remains after digestive proteolysis and accumulates in the gut mucosa. Here, we report the formation of 33-mer thin-plate superstructures using intrinsic tyrosine (Tyr) steady-state fluorescence anisotropy and cryo-TEM in combination with water tension measurements.
View Article and Find Full Text PDFThe activation of GABAA receptors by the neurotransmitter gamma-aminobutyric acid mediates the rapid inhibition response in the central nervous system of mammals. Many neurological and mental health disorders arise from alterations in the structure or function of these pentameric ion channels. GABAA receptors are targets for numerous drugs, including benzodiazepines, which bind to α1β2γ2 GABAA receptors with high affinity to a site in the extracellular domain, between subunits α1 and γ2.
View Article and Find Full Text PDFThe proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease.
View Article and Find Full Text PDFThe pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years.
View Article and Find Full Text PDFIn this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments.
View Article and Find Full Text PDFγ-aminobutyric acid-type A (GABA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2018
Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
February 2015
Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells.
View Article and Find Full Text PDFIntestinal fatty acid-binding protein (IFABP) is highly expressed in the intestinal epithelium and it belongs to the family of soluble lipid binding proteins. These proteins are thought to participate in most aspects of the biology of lipids, regulating its availability for specific metabolic pathways, targeting and vectorial trafficking of lipids to specific subcellular compartments. The present study is based on the ability of IFABP to interact with phospholipid membranes, and we characterized its immersion into the bilayer's hydrophobic central region occupied by the acyl-chains.
View Article and Find Full Text PDFGliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.
View Article and Find Full Text PDFThe members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others.
View Article and Find Full Text PDFThe role of fatty acid binding proteins as intracellular fatty acid transporters may require their direct interaction with membranes. In this way different mechanisms have been previously characterized through experimental studies suggesting different models for FABPs-membrane association, although the process in which the molecule adsorbs to the membrane remains to be elucidated. To estimate the importance of the electrostatic energy in the FABP-membrane interaction, we computationally modeled the interaction of different FABPs with both anionic and neutral membranes.
View Article and Find Full Text PDFWe previously demonstrated that 1α,25(OH)(2)-vitamin D(3) [1α,25(OH)(2)D(3)] induces Src activation, which mediates the hormone-dependent ERK1/2 and p38 MAPK phosphorylation in skeletal muscle cells. In the present study, we have investigated upstream steps whereby 1α,25(OH)(2)D(3) may act to transmit its signal to Src. Preincubation with the PKC inhibitor Ro318220 demonstrated the participation of PKC in 1α,25(OH)(2)D(3)-dependent Src activation.
View Article and Find Full Text PDFAcyl-CoA binding proteins (ACBPs) are highly conserved 10 kDa cytosolic proteins that bind medium- and long-chain acyl-CoA esters. They act as intracellular carriers of acyl-CoA and play a role in acyl-CoA metabolism, gene regulation, acyl-CoA-mediated cell signaling, transport-mediated lipid synthesis, membrane trafficking and also, ACBPs were indicated as a possible inhibitor of diazepam binding to the GABA-A receptor. To estimate the importance of the non-specific electrostatic energy in the ACBP-membrane interaction, we computationally modeled the interaction of HgACBP with both anionic and neutral membranes.
View Article and Find Full Text PDFAcyl-CoA binding protein (ACBP) plays a key role in lipid metabolism, interacting via a partly unknown mechanism with high affinity with long chain fatty acyl-CoAs (LCFA-CoAs). At present there is no study of the microscopic way ligand binding is accomplished. We analyzed this process by molecular dynamics (MDs) simulations.
View Article and Find Full Text PDFThe adult form of the nicotinic acetylcholine receptor (AChR) consists of five subunits (alpha(2)betaepsilondelta), each having four transmembrane domains (M1-M4). The atomic model of the nicotinic acetylcholine receptor shows that the pore-lining M2 domains make no extensive contacts with the rest of the transmembrane domains. However, there are several sites where close appositions between segments occur.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2006
The X-ray structure of the tetragonal form of apo acyl-CoA-binding protein (ACBP) from the Harderian gland of the South American armadillo Chaetophractus villosus has been solved. ACBP is a carrier for activated long-chain fatty acids and has been associated with many aspects of lipid metabolism. Its secondary structure is highly similar to that of the corresponding form of bovine ACBP and exhibits the unique flattened alpha-helical bundle (up-down-down-up) motif reported for animal, yeast and insect ACBPs.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2004
Triatoma virus (TrV) is a viral pathogen of the blood-sucking reduviid bug Triatoma infestans, the most important vector of American human trypanosomiasis (Chagas' disease). TrV has been putatively classified as a member of the Cripavirus genus (type cricket paralysis virus) in the Dicistroviridae family. This work describes the purification of TrV particles from infected T.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2002
The structure of the endoglucanase A from Clostridium thermocellum CelA was re-solved by three-wavelength MAD. Experimental phases were obtained in the resolution range 25-1.0 A.
View Article and Find Full Text PDFThe crystal structure of Clostridium thermocellum endoglucanase CelA in complex with cellopentaose has been determined at 0.94 A resolution. The oligosaccharide occupies six D-glucosyl-binding subsites, three on either side of the scissile glycosidic linkage.
View Article and Find Full Text PDF