Publications by authors named "Marcelo Ciappina"

The increasing interest in chiral light stems from its spiral trajectory along the propagation direction, facilitating the interaction between different polarization states of light and matter. Despite tremendous achievements in chiral light-related research, the generation and control of chiral pulses have presented enduring challenges, especially at the terahertz and ultraviolet spectral ranges, due to the lack of suitable optical elements for effective pulse manipulation. Conventionally, chiral light can be obtained from intricate optical systems, by an external magnetic field, or by metamaterials, which necessitate sophisticated optical configurations.

View Article and Find Full Text PDF

Squeezed optical fields are a powerful resource for a variety of investigations in basic research and technology. However, the generation of intense squeezed light is challenging. Here, we show that intense squeezed light can be produced using strongly laser driven atoms and the so far unrelated process of high harmonic generation.

View Article and Find Full Text PDF

We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs.

View Article and Find Full Text PDF

We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, lead to the generation of high photon number optical cat states spanning from the far infrared to the extreme ultraviolet spectral region.

View Article and Find Full Text PDF
Article Synopsis
  • * Their ultrafast response enables detailed study of photon-electron interactions, producing strong electric fields with low laser intensities, unlike traditional optical methods that require expensive equipment.
  • * The review highlights key advancements in ultrafast plasmonics from the past decade, focusing on strong-field physics and the use of optical frequency combs in ultraprecision spectroscopy.
View Article and Find Full Text PDF

Abstract: We investigate twisted electrons with a well-defined orbital angular momentum, which have been ionised via a strong laser field. By formulating a new variant of the well-known strong field approximation, we are able to derive conservation laws for the angular momenta of twisted electrons in the cases of linear and circularly polarised fields. In the case of linear fields, we demonstrate that the orbital angular momentum of the twisted electron is determined by the magnetic quantum number of the initial bound state.

View Article and Find Full Text PDF

Strong field processes involving several active electrons reveal unambiguous dynamical signatures of the Pauli principle importance even in the nonrelativistic regime. We exemplify this statement studying three active electrons model atoms interacting with strong pulsed radiation, using an ab-initio time-dependent Schrödinger equation on a grid. In our restricted dimensionality model we are able to analyze momenta correlations of the three outgoing electrons using Dalitz plots.

View Article and Find Full Text PDF

We present here a theoretical analysis of the interaction between an ideal two-level quantum system and a super-oscillatory pulse, like the one proposed and successfully synthesized in [J. Opt.23, 075604 (2021)JOOPDB0150-536X10.

View Article and Find Full Text PDF

A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems.

View Article and Find Full Text PDF

Nonlinear susceptibilities are key to ultrafast lightwave driven optoelectronics, allowing petahertz scaling manipulation of the signal. Recent experiments retrieved a 3rd order nonlinear susceptibility by comparing the nonlinear response induced by a strong laser field to a linear response induced by the otherwise identical weak field. The highly nonlinear nature of high harmonic generation (HHG) has the potential to extract even higher order nonlinear susceptibility terms.

View Article and Find Full Text PDF

This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA).

View Article and Find Full Text PDF

Interference experiments with electrons in a vacuum can illuminate both the quantum and the nanoscale nature of the underlying physics. An interference experiment requires two coherent waves, which can be generated by splitting a single coherent wave using a double slit. If the slit-edge separation is larger than the coherence width at the slit, no interference appears.

View Article and Find Full Text PDF

We predict that a direct band gap semiconductor (GaAs) resonantly excited by a strong ultrashort laser pulse exhibits a novel regime: kicked anharmonic Rabi oscillations. In this regime, Rabi oscillations are strongly coupled to intraband motion, and interband transitions mainly take place when electrons pass near the Brillouin zone center where electron populations undergo very rapid changes. The asymmetry of the residual population distribution induces an electric current controlled by the carrier-envelope phase of the driving pulse.

View Article and Find Full Text PDF

The dc field Stark effect is studied theoretically for atoms in high intensity laser fields. We prove that the first-order perturbation corrections for the energy and photoionization rate vanish when the dc field strength serves as a perturbational strength parameter. Our calculations show that by applying a dc field in the same direction as the polarization direction of the ac field, the photoinduced ionization rate is almost entirely suppressed.

View Article and Find Full Text PDF