Publications by authors named "Marcelo Catalan"

Slc4a genes encode various types of transporters, including Na-HCO cotransporters, Cl/HCO exchangers, or Na-driven Cl/HCO exchangers. Previous research has revealed that Slc4a9 (Ae4) functions as a Cl/HCO exchanger, which can be driven by either Na or K, prompting investigation into whether other Slc4a members facilitate cation-dependent anion transport. In the present study, we show that either Na or K drive Cl/HCO exchanger activity in cells overexpressing Slc4a8 or Slc4a10.

View Article and Find Full Text PDF

Sch. Bip is an endemic plant commonly employed in the Andes culture to counteract the effects of mountain sickness, and its bioactive molecules could provide new drugs for treating hypertension. The purpose was to determine whether the vascular response of the plant bioactive molecules, such as (5-acetyl-6-hydroxy-2-isopropenyl-2,3-dihydrobenzofurane; Sn-I), could be improved by a simple structural modification to synthesize oximes (Ox-Sn-I).

View Article and Find Full Text PDF

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues.

View Article and Find Full Text PDF

Infusions of are commonly used in Peruvian folk medicine for treating gastrointestinal disorders. This study aimed to investigate the spasmolytic and antispasmodic effects of essential oil (VPEO) on rat ileum. The basal tone of ileal sections decreased in response to accumulative concentrations of VPEO.

View Article and Find Full Text PDF

Two pore domain potassium channels (K2P) are strongly expressed in the nervous system (CNS), where they play a central role in excitability. These channels give rise to background K currents, also known as IK (standing-outward potassium current). We detected the expression in primary cultured cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels by immunocytochemistry and their association with lipid rafts using the specific lipids raft markers flotillin-2 and caveolin-1.

View Article and Find Full Text PDF

In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled to the circadian rhythm of the host. On the other hand, a close correlation between increased body weight and light pollution at night has been reported in humans and animal models. However, the mechanisms underlying such weight gain in response to light contamination at night remain elusive.

View Article and Find Full Text PDF

Ae4 transporters are critical for Cl uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl/HCO exchanger activity in SMG acinar cells from Ae2 mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation.

View Article and Find Full Text PDF

Lubiprostone, a 20-carbon synthetic fatty acid used for the treatment of constipation, is thought to act through an action on Cl channel ClC-2. Short chain fatty acids (SCFAs) are produced and absorbed in the distal intestine. We explore whether SCFAs affect ClC-2, re-examine a possible direct effect of lubiprostone on ClC-2, and use mice deficient in ClC-2 to stringently address the hypothesis that the epithelial effect of lubiprostone targets this anion channel.

View Article and Find Full Text PDF

Withaferin A (WFA), a C,C-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood.

View Article and Find Full Text PDF

The mechanisms underlying the functional differences in sympathetic and parasympathetic regulation of the major salivary glands have received little attention. The acute effects of parasympathetic muscarinic (carbachol)-dependent and combined parasympathetic-dependent plus cAMP-dependent pathways on fluid secretion rates, ion composition, and protein content were assessed using a newly developed ex vivo preparation that allows the simultaneous perfusion of the mouse submandibular (SMGs) and sublingual glands (SLGs). Our results confirm that the muscarinic-dependent pathway accounts for the bulk of salivation in SMGs and SLGs, whereas costimulation with a cAMP-increasing agent (forskolin, isoproterenol, or vasoactive intestinal peptide) did not increase the flow rate.

View Article and Find Full Text PDF

Two-pore domain K⁺ channels (K₂P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the presence of the cap explains the insensitivity of K₂P channels to several K⁺ channel blockers including tetraethylammonium (TEA). We have explored this hypothesis using mutagenesis and functional analysis, followed by molecular simulations.

View Article and Find Full Text PDF

We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential.

View Article and Find Full Text PDF

Na:K:2Cl cotransporters (NKCCs) belong to the family of cation-coupled Cl transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer.

View Article and Find Full Text PDF

Ae4 (Slc4a9) belongs to the Slc4a family of Cl(-)/HCO3 (-) exchangers and Na(+)-HCO3 (-) cotransporters, but its ion transport cycle is poorly understood. In this study, we find that native Ae4 activity in mouse salivary gland acinar cells supports Na(+)-dependent Cl(-)/HCO3 (-) exchange that is comparable with that obtained upon heterologous expression of mouse Ae4 and human AE4 in CHO-K1 cells. Additionally, whole cell recordings and ion concentration measurements demonstrate that Na(+) is transported by Ae4 in the same direction as HCO3 (-) (and opposite to that of Cl(-)) and that ion transport is not associated with changes in membrane potential.

View Article and Find Full Text PDF

Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells.

View Article and Find Full Text PDF

Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)).

View Article and Find Full Text PDF

In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca(2+)-dependent K(+) channels take part in key functions including membrane potential regulation, fluid movement and K(+) secretion in exocrine glands. Two K(+) channels have been identified in exocrine salivary glands: (1) a Ca(2+)-activated K(+) channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca(2+)-dependent K(+) channel of large single channel conductance encoded by the KCNMA1 gene.

View Article and Find Full Text PDF

Objective: Primary Sjögren's syndrome (SS) is characterized by autoimmune activation and loss of function in secretory epithelia. The present study was undertaken to investigate and characterize changes in the epithelia associated with the loss of gland function in primary SS.

Methods: To identify changes in epithelial gene expression, custom microarrays were probed with complementary RNA (cRNA) isolated from minor salivary glands (MSGs) of female patients with primary SS who had low focus scores and low salivary flow rates, and the results were compared with those obtained using cRNA from the MSGs of sex-matched healthy volunteers.

View Article and Find Full Text PDF

Transient receptor potential vanilloid subtype 4 (TRPV4) is a ligand-gated nonselective cation channel that participates in the transduction of mechanical and osmotic stimuli in different tissues. TRPV4 is activated by endogenous arachidonic acid metabolites, 4α-phorbol-12,13 didecanoate, GSK1016790A, moderate heat, and mechanical stress. TRPV4 is expressed in the salivary glands, but its expression pattern and function are poorly understood.

View Article and Find Full Text PDF

A healthy salivary gland secretes saliva in two stages. First, acinar cells generate primary saliva, a plasma-like, isotonic fluid high in Na(+) and Cl(-). In the second stage, the ducts exchange Na(+) and Cl(-) for K(+) and HCO(3)(-), producing a hypotonic final saliva with no apparent loss in volume.

View Article and Find Full Text PDF

Background & Aims: The fluid secretion model predicts that intestinal obstruction disorders can be alleviated by promoting epithelial Cl(-) secretion. The adenosine 3',5'-cyclic monophosphate (cAMP)-activated anion channel CFTR mediates Cl(-)-dependent fluid secretion in the intestine. Although the role of the ClC-2 channel has not been determined in the intestine, this voltage-gated Cl(-) channel might compensate for the secretory defects observed in patients with cystic fibrosis and other chronic constipation disorders.

View Article and Find Full Text PDF