Micro RNAs (miRNAs) are a class of small, non-coding RNA species that play critical roles throughout cellular development and regulation. miRNA expression patterns taken from various tissue types often point to the cellular lineage of an individual tissue type, thereby being a more invariant hallmark of tissue type. Recent work has shown that these miRNA expression patterns can be used to classify tumor cells, and that this classification can be more accurate than the classification achieved by using messenger RNA gene expression patterns.
View Article and Find Full Text PDFDNA microarrays are an important tool with a variety of applications in gene expression studies, genotyping, pharmacogenomics, pathogen classification, drug discovery, sequencing and molecular diagnostics. They are having a strong impact in medical diagnostics for cancer, toxicology and infectious disease applications. A series of papers have been published describing DNA biochips as alternative to conventional microarray platforms to facilitate and ameliorate the signal readout.
View Article and Find Full Text PDFAn addressable electrode array was used for the production of acid at sufficient concentration to allow deprotection of the dimethoxytrityl (DMT) protecting group from an overlaying substrate bound to a porous reaction layer. Containment of the generated acid to an active electrode of 100 micron diameter was achieved by the presence of an organic base. This procedure was then used for the production of a DNA array, in which synthesis was directed by the electrochemical removal of the DMT group during synthesis.
View Article and Find Full Text PDFIn the face of concerns over an influenza pandemic, identification of virulent influenza A virus isolates must be obtained quickly for effective responses. Rapid subtype identification, however, is difficult even in well-equipped virology laboratories or is unobtainable in the field under more austere conditions. Here we describe a genome assay and microarray design that can be used to rapidly identify influenza A virus hemagglutinin subtypes 1 through 15 and neuraminidase subtypes 1 through 9.
View Article and Find Full Text PDF