Six species of freshwater turtles dominate the Chaco-Pampa Plain in southern South America and their parasites have been relatively understudied, with most records concentrated in Brazil. Particularly in Argentina, there are only scattered records of parasites for most of the turtles that inhabit the region, leaving a large knowledge gap. The purpose of the present contribution is to increase the knowledge of the internal parasites of six species of freshwater turtles from Argentina, after 15 years of fieldwork, by providing new hosts and additional geographic records for many host-parasite relationships.
View Article and Find Full Text PDFMost of the literature on temperature-organism interactions rely on mean temperature (mostly air), disregarding the real complexity of this variable. There is a growing consensus about the importance of considering the temperature fluctuations as a mechanism improving organism's performance. Tadpoles are small body size ectotherm organisms that behave isothermally with their environment.
View Article and Find Full Text PDFEctotherms are vulnerable to climate change, given their dependence on temperature, and amphibians are particularly interesting because of their complex life cycle. Tadpoles may regulate their body temperature by using suitable thermal microhabitats. Thus, their physiological responses are the result of adjustment to the local thermal limits experienced in their ponds.
View Article and Find Full Text PDFThe body temperature of ectotherms depends on the environmental temperatures and behavioral adjustments, but morphology may also have an effect. For example, in colder environments, animals tend to be larger and to show higher thermal inertia, as proposed by Bergmann's rule and the heat balance hypothesis (HBH). Additionally, dark coloration increases solar radiation absorption and should accelerate heat gain (thermal melanism hypothesis, TMH).
View Article and Find Full Text PDFOne of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance.
View Article and Find Full Text PDFThe importance of the thermal environment for ectotherms and its relationship with thermal physiology and ecology is widely recognized. Several models have been proposed to explain the evolution of the thermal biology of ectotherms, but experimental studies have provided mixed support. Lizards from the Liolaemus goetschi group can be found along a wide latitudinal range across Argentina.
View Article and Find Full Text PDFJ Exp Zool A Ecol Genet Physiol
October 2011
The integration or coadaptation of morphological, physiological, and behavioral traits is represented by whole-organism performance traits such as locomotion or bite force. Additionally, maximum sprint speed is a good indicator of whole-organism performance capacity as variation in sprinting ability can affect survival. We studied thermal biology, morphology, and locomotor performance in a clade of Liolaemus lizards that occurs in the Patagonian steppe and plateaus, a type of habitat characterized by its harsh cold climate.
View Article and Find Full Text PDF