Publications by authors named "Marcelo A C Fernandes"

Most of the rapid inhibitory neurotransmission in the brain is mediated through activation of the γ-aminobutyric acid (GABA) type A (GABA) receptor, which is a ligand-gated ion channel. GABA receptor activation via GABA binding allows for an intracellular influx of Cl ions, thus inducing cellular hyperpolarization. Each GABA receptor consists of a combination of five subunits, and several subunits have been proposed as biomarkers and therapeutic targets in cancer.

View Article and Find Full Text PDF
Article Synopsis
  • - Changes in epigenetic processes like histone acetylation are important for the function and progression of pediatric brain tumors, with drugs like valproic acid (VPA) showing potential as anticancer therapies by inhibiting histone deacetylases (HDACs).
  • - VPA treatment resulted in reduced viability of medulloblastoma (MB) cells, induced cell cycle arrest, and altered gene expression related to oncogenes and differentiation, alongside morphological changes that suggest neuronal differentiation.
  • - The effects of VPA on MB cells included modifications in histone acetylation patterns that correlated with patient outcomes, suggesting its potential to influence clinical prognosis by targeting stemness and differentiation in specific MB subgroups.
View Article and Find Full Text PDF

Background: Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy.

View Article and Find Full Text PDF

Purpose: In this study, we present DeepVirusClassifier, a tool capable of accurately classifying Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral sequences among other subtypes of the coronaviridae family. This classification is achieved through a deep neural network model that relies on convolutional neural networks (CNNs). Since viruses within the same family share similar genetic and structural characteristics, the classification process becomes more challenging, necessitating more robust models.

View Article and Find Full Text PDF

This work proposes an implementation of the SHA-256, the most common blockchain hash algorithm, on a field-programmable gate array (FPGA) to improve processing capacity and power saving in Internet of Things (IoT) devices to solve security and privacy issues. This implementation presents a different approach than other papers in the literature, using clustered cores executing the SHA-256 algorithm in parallel. Details about the proposed architecture and an analysis of the resources used by the FPGA are presented.

View Article and Find Full Text PDF

Retinoic acid (RA) regulates stemness and differentiation in human embryonic stem cells (ESCs). Ewing sarcoma (ES) is a pediatric tumor that may arise from the abnormal development of ESCs. Here we show that RA impairs the viability of SK-ES-1 ES cells and affects the cell cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid neuronal inhibition in the brain involves GABA activation of its receptors, with specific gene subunits linked to aggressive medulloblastoma, yet their role in gliomas remains unclear.
  • This study analyzed GABA receptor subunit gene expression in gliomas using data from the French and TCGA-LGG datasets, finding that higher expression correlates with better overall survival in patients.
  • The results suggest that down-regulation of GABA receptors may promote glioma progression, indicating potential for GABA receptors as therapeutic targets.
View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common type of central nervous system tumors, significantly impacting both adults and children, with glioblastoma (GBM) being the most critical and aggressive form in adults with a poor survival outlook.
  • The protein CD114 acts as a receptor related to granulocyte colony stimulating factor (GCSF) and is known as a cancer stem cell marker, showing higher expression in various cancers, including certain gliomas.
  • Our research indicates that higher levels of CD114 mRNA in gliomas, particularly astrocytomas and GBM, correlate with worse overall survival (OS) for patients, suggesting that CD114 could serve as a potential prognostic marker for GBM.
View Article and Find Full Text PDF

Background: In December 2019, the first case of COVID-19 was described in Wuhan, China, and by July 2022, there were already 540 million confirmed cases. Due to the rapid spread of the virus, the scientific community has made efforts to develop techniques for the viral classification of SARS-CoV-2.

Results: In this context, we developed a new proposal for gene sequence representation with Genomic Signal Processing techniques for the work presented in this paper.

View Article and Find Full Text PDF

This work aimed to develop a real-time test platform for systems associated with the tactile internet area. The proposal comprises a master device, a communication channel and a slave device. The master device is a tactile glove (wearable technology) that works as a tactile interface based on vibratory feedback.

View Article and Find Full Text PDF

Since December 2019, the world has been intensely affected by the COVID-19 pandemic, caused by the SARS-CoV-2. In the case of a novel virus identification, the early elucidation of taxonomic classification and origin of the virus genomic sequence is essential for strategic planning, containment, and treatments. Deep learning techniques have been successfully used in many viral classification problems associated with viral infection diagnosis, metagenomics, phylogenetics, and analysis.

View Article and Find Full Text PDF

Tactile internet applications allow robotic devices to be remotely controlled over a communication medium with an unnoticeable time delay. In bilateral communication, the acceptable round trip latency is usually 1 ms up to 10 ms, depending on the application requirements. The communication network is estimated to generate 70% of the total latency, and master and slave devices produce the remaining 30%.

View Article and Find Full Text PDF

COVID-19, the illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus belonging to the family, a single-strand positive-sense RNA genome, has been spreading around the world and has been declared a pandemic by the World Health Organization. On 17 January 2022, there were more than 329 million cases, with more than 5.5 million deaths.

View Article and Find Full Text PDF

In bioinformatics, alignment is an essential technique for finding similarities between biological sequences. Usually, the alignment is performed with the Smith-Waterman (SW) algorithm, a well-known sequence alignment technique of high-level precision based on dynamic programming. However, given the massive data volume in biological databases and their continuous exponential increase, high-speed data processing is necessary.

View Article and Find Full Text PDF

Tactile Internet (TI) is a new internet paradigm that enables sending touch interaction information and other stimuli, which will lead to new human-to-machine applications. However, TI applications require very low latency between devices, as the system's latency can result from the communication channel, processing power of local devices, and the complexity of the data processing techniques, among others. Therefore, this work proposes using dedicated hardware-based reconfigurable computing to reduce the latency of prediction techniques applied to TI.

View Article and Find Full Text PDF

Preterm birth (PTB) is a phenomenon that brings risks and challenges for the survival of the newborn child. Despite many advances in research, not all the causes of PTB are already clear. It is understood that PTB risk is multi-factorial and can also be associated with socioeconomic factors.

View Article and Find Full Text PDF

Drug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. The prediction of drug-target interactions is an essential part of the DD process because it can accelerate it and reduce the required costs.

View Article and Find Full Text PDF

This work proposes a high-throughput implementation of the Otsu automatic image thresholding algorithm on Field Programmable Gate Array (FPGA), aiming to process high-resolution images in real-time. The Otsu method is a widely used global thresholding algorithm to define an optimal threshold between two classes. However, this technique has a high computational cost, making it difficult to use in real-time applications.

View Article and Find Full Text PDF

Self-Organizing Maps (SOMs) are extensively used for data clustering and dimensionality reduction. However, if applications are to fully benefit from SOM based techniques, high-speed processing is demanding, given that data tends to be both highly dimensional and yet "big". Hence, a fully parallel architecture for the SOM is introduced to optimize the system's data processing time.

View Article and Find Full Text PDF

As of May 25, 2020, the novel coronavirus disease (called COVID-19) spread to more than 185 countries/regions with more than 348,000 deaths and more than 5,550,000 confirmed cases. In the bioinformatics area, one of the crucial points is the analysis of the virus nucleotide sequences using approaches such as data stream techniques and algorithms. However, to make feasible this approach, it is necessary to transform the nucleotide sequences string to numerical stream representation.

View Article and Find Full Text PDF

This work proposes dedicated hardware to real-time cancer detection using Field-Programmable Gate Arrays (FPGA). The presented hardware combines a Multilayer Perceptron (MLP) Artificial Neural Networks (ANN) with Digital Image Processing (DIP) techniques. The DIP techniques are used to extract the features from the analyzed skin, and the MLP classifies the lesion into melanoma or non-melanoma.

View Article and Find Full Text PDF

As of April 16, 2020, the novel coronavirus disease (called COVID-19) spread to more than 185 countries/regions with more than 142,000 deaths and more than 2,000,000 confirmed cases. In the bioinformatics area, one of the crucial points is the analysis of the virus nucleotide sequences using approaches such as data stream, digital signal processing, and machine learning techniques and algorithms. However, to make feasible this approach, it is necessary to transform the nucleotide sequences string to numerical values representation.

View Article and Find Full Text PDF

This work proposes dedicated hardware for an intelligent control system on Field Programmable Gate Array (FPGA). The intelligent system is represented as Takagi-Sugeno Fuzzy-PI controller. The implementation uses a fully parallel strategy associated with a hybrid bit format scheme (fixed-point and floating-point).

View Article and Find Full Text PDF

This project aims to develop a tactile glove device and a virtual environment inserted in the context of tactile internet. The tactile glove allows a human operator to interact remotely with objects from a 3D environment through tactile feedback or tactile sensation. In other words, the human operator is able to feel the contour and texture from virtual objects.

View Article and Find Full Text PDF

This work describes the performance of a DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm) algorithm applied to autonomous navigation in unknown static and dynamic terrestrial environments. The main aim was to validate the functionality and robustness of the DPNA-GA, with variations of genetic parameters including the crossover rate and population size. To this end, simulations were performed of static and dynamic environments, applying the different conditions.

View Article and Find Full Text PDF