Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment.
View Article and Find Full Text PDFBackground: Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the only approach to rapidly monitor and tackle emerging variants of concern (VOC) of the COVID-19 pandemic. Such scrutiny is crucial to limit the spread of VOC that might escape the immune protection conferred by vaccination strategies or previous virus exposure. It is also becoming clear now that efficient genomic surveillance would require monitoring of the host gene expression to identify prognostic biomarkers of treatment efficacy and disease progression.
View Article and Find Full Text PDF