Purpose Of Review: This review will cover the most relevant findings on the use of machine learning (ML) techniques in the field of non-affective psychosis, by summarizing the studies published in the last three years focusing on illness detection and treatment.
Recent Findings: Multiple ML tools that include mostly supervised approaches such as support vector machine, gradient boosting, and random forest showed promising results by applying these algorithms to various sources of data: socio-demographic information, EEG, language, digital content, blood biomarkers, neuroimaging, and electronic health records. However, the overall performance, in the binary classification case, varied from 0.
The first rate-limiting step to successfully translate prevention of psychosis in to clinical practice is to establish specialised Clinical High Risk for Psychosis (CHR-P) services. This study systematises the knowledge regarding CHR-P services and provides guidelines for translational implementation. We conducted a PRISMA/MOOSE-compliant (PROSPERO-CRD42020163640) systematic review of Web of Science to identify studies until 4/05/2020 reporting on CHR-P service configuration, outreach strategy and referrals, service user characteristics, interventions, and outcomes.
View Article and Find Full Text PDF