Background And Aims: Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using preparations with multi-layer immunohistochemistry.
View Article and Find Full Text PDFMotor function of the colon is essential for health. Our current understanding of the mechanisms that underlie colonic motility are based upon a range of experimental techniques, including molecular biology, single cell studies, recordings from muscle strips, analysis of part or whole organ ex vivo through to in vivo human recordings. For the surgeon involved in the clinical management of colonic conditions this amounts to a formidable volume of material.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
September 2023
Background And Aims: Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease.
Methods: Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding.
Patients with irritable bowel syndrome (IBS) have recurrent lower abdominal pain, associated with altered bowel habit (diarrhea and/or constipation). As bowel habit is altered, abnormalities in colonic motility are likely to contribute; however, characterization of colonic motor patterns in patients with IBS remains poor. Utilizing fiber-optic manometry, we aimed to characterize distal colonic postprandial colon motility in diarrhea-predominant IBS.
View Article and Find Full Text PDFBackground: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals.
Methods: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia.
The speed of pellet propulsion through the isolated guinea pig distal colon in vitro significantly exceeds in vivo measurements, suggesting a role for inhibitory mechanisms from sources outside the gut. The aim of this study was to investigate the effects of sympathetic nerve stimulation on three different neurogenic motor behaviors of the distal colon: transient neural events (TNEs), colonic motor complexes (CMCs), and pellet propulsion. To do this, segments of guinea pig distal colon with intact connections to the inferior mesenteric ganglion (IMG) were set up in organ baths allowing for simultaneous extracellular suction electrode recordings from smooth muscle, video recordings for diameter mapping, and intraluminal manometry.
View Article and Find Full Text PDFThe enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity.
View Article and Find Full Text PDFOver 150 years ago, methods for quantitative analysis of gastrointestinal motor patterns first appeared. Graphic representations of physiological variables were recorded with the kymograph after the mid-1800s. Changes in force or length of intestinal muscles could be quantified, however most recordings were limited to a single point along the digestive tract.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2023
Distinguishing and characterising the different classes of neurons that make up a neural circuit has been a long-term goal for many neuroscientists. The enteric nervous system is a large but moderately simple part of the nervous system. Enteric neurons in laboratory animals have been extensively characterised morphologically, electrophysiologically, by projections and immunohistochemically.
View Article and Find Full Text PDFThe autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation.
View Article and Find Full Text PDFBackground: In the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus ("hypogastric plexus") and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming "ascending nerves" or "shunt fascicles" running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width.
View Article and Find Full Text PDFBackground: In most animal species, opioids alter colonic motility via the inhibition of excitatory enteric motor neurons. The mechanisms by which opioids alter human colonic motility are unclear. The aim of this study was to describe the effects of loperamide on neuromuscular function in the human colon.
View Article and Find Full Text PDFQuantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2022
Colonic motor complexes (CMCs) are a major neurogenic activity in guineapig distal colon. The identity of the enteric neurons that initiate this activity is not established. Specialized intrinsic primary afferent neurons (IPANs) are a major candidate.
View Article and Find Full Text PDFSoft faecal material is transformed into discrete, pellet-shaped faeces at the colonic flexure. Here, analysis of water content in natural faecal material revealed a decline from cecum to rectum without significant changes at the flexure. Thus, pellet formation is not explained by changes in viscosity alone.
View Article and Find Full Text PDFHow the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion.
View Article and Find Full Text PDFThe enteric nervous system controls much of the mixing and propulsion of nutrients along the digestive tract. Enteric neural circuits involve intrinsic sensory neurons, interneurons and motor neurons. While the role of the excitatory motor neurons is well established, the role of the enteric inhibitory motor neurons (IMNs) is less clear.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2021
Bisacodyl is a stimulant laxative often used in manometric studies of pediatric constipation to determine if it can initiate propulsive high-amplitude propagating contractions (HAPCs). Whereas the effects of bisacodyl infusion on colonic motility are well described, the effects of the drug on other regions of the gut after colonic infusion are not known. The aim of the present study was to characterize the effects of bisacodyl on both colonic and small bowel motility.
View Article and Find Full Text PDFHere, we recognise some of the extraordinary accomplishments of the partnership between Geoff Burnstock and Mollie Holman, and the everlasting impact they both made in autonomic neuroscience in Australia. Much of strength today in autonomic neuroscience can be traced back to a time when Geoff and Mollie commenced their seminal studies on autonomic neuroscience, initially at Oxford, then at The University of Melbourne in the mid 1960's. Mollie and Geoff published their first paper together, at Oxford, with their then mentor, and doyenne of smooth muscle, Professor Edith Bülbring.
View Article and Find Full Text PDFBackground: The colonic motor patterns associated with gas transit are poorly understood. This study describes the application of high-resolution impedance manometry (HRiM) in the human colon in vivo to characterize distal colonic motility and gas transit; (a) after a meal and (b) after intraluminal gas insufflation into the sigmoid colon.
Methods: HRiM recordings were performed in 19 healthy volunteers, with sensors positioned from the distal descending colon to the proximal rectum.
Manual analysis of human high-resolution colonic manometry data is time consuming, non-standardized and subject to laboratory bias. In this article we present a technique for spectral analysis and statistical inference of quasiperiodic spatiotemporal signals recorded during colonic manometry procedures. Spectral analysis is achieved by computing the continuous wavelet transform and cross-wavelet transform of these signals.
View Article and Find Full Text PDFBackground: In herbivores, the proximal and distal colonic regions feature distinct motor patterns underlying formation and propulsion of fecal pellets, respectively. Omnivores, such as mice and humans, lack a similar clear anatomical transition between colonic regions. We investigated whether distinct processes form and propel content along the large intestine of a mouse (an omnivore).
View Article and Find Full Text PDFNeurogastroenterol Motil
May 2021
Background: Colonic motor complexes (CMCs) have been widely recorded in the large intestine of vertebrates. We have investigated whether in the smooth muscle, a single unified pattern of electrical activity, or different patterns of electrical activity give rise to the different neurogenic patterns of motility underlying CMCs in vitro.
Methods: To study differences of the CMCs between proximal and distal colon, we used a novel combination of techniques to simultaneously record muscle diameter and force at multiple sites along the whole mouse colon ex vivo.