Projection neurons that communicate between different brain regions and local neurons that shape computation within a brain region form the majority of all neurons in the brain. Another important class of neurons is neuromodulatory neurons; these neurons are in much smaller numbers than projection/local neurons but have a large influence on computations in the brain. Neuromodulatory neurons are classified by the neurotransmitters they carry, such as dopamine and serotonin.
View Article and Find Full Text PDFCholinergic interneurons in the striatum, also known as tonically active interneurons or TANs, are thought to have a strong effect on corticostriatal plasticity and on striatal activity and outputs, which in turn play a critical role in modulating downstream basal ganglia activity and movement. Striatal TANs can exhibit a variety of firing patterns and responses to synaptic inputs; furthermore, they have been found to display various surges and pauses in activity associated with sensory cues and reward delivery in learning as well as with motor tic production. To help explain the factors that contribute to TAN activity patterns and to provide a resource for future studies, we present a novel conductance-based computational model of a striatal TAN.
View Article and Find Full Text PDFPrevious authors have proposed two basic hypotheses about the factors that form the basis of locomotor rhythms in walking insects: sensory feedback only or sensory feedback together with rhythmic activity of small neural circuits called central pattern generators (CPGs). Here we focus on the latter. Following this concept, to generate functional outputs, locomotor control must feature both rhythm generation by CPGs at the level of individual joints and coordination of their rhythmic activities, so that all muscles are activated in an appropriate pattern.
View Article and Find Full Text PDFTask-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei.
View Article and Find Full Text PDF