Publications by authors named "Marcellino D"

Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic and modifiable risk factors influence disease susceptibility are under intense investigation, with APOE being the major genetic risk factor for late onset AD. Yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic, fixed and modifiable risk factors influence susceptibility to AD are under intense investigation, yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear. To model multiple risk factors including APOE genotype, age, sex, diet, and immunity we leveraged mice expressing the human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2.

View Article and Find Full Text PDF
Article Synopsis
  • Optical Projection Tomography (OPT) and light sheet fluorescence microscopy (LSFM) are advanced imaging techniques used for creating detailed 3D images of mouse brains, but tissue autofluorescence limits the anatomical detail.
  • T1-weighted MR images from 19 cleared brains were used to create an MR template, which was then fused with OPT and LSFM images for better visualization and identification of brain structures and infections.
  • The study resulted in two optimized templates for BABB and DBE cleared brains, facilitating anatomical mapping of fluorescent signals on MR images and enhancing neuroscience research applications.
View Article and Find Full Text PDF

The human aging brain is characterized by changes in network efficiency that are currently best captured through longitudinal resting-state functional MRI (rs-fMRI). These studies however are challenging due to the long human lifespan. Here we show that the mouse animal model with a much shorter lifespan allows us to follow the functional network organization over most of the animal's adult lifetime.

View Article and Find Full Text PDF

Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI.

View Article and Find Full Text PDF

From observations in rodents, it has been suggested that the cellular basis of learning-dependent changes, detected using structural MRI, may be increased dendritic spine density, alterations in astrocyte volume, and adaptations within intracortical myelin. Myelin plasticity is crucial for neurological function, and active myelination is required for learning and memory. However, the dynamics of myelin plasticity and how it relates to morphometric-based measurements of structural plasticity remains unknown.

View Article and Find Full Text PDF

Sigma-1 receptor agonists have recently gained a great deal of interest due to their anti-amnesic, neuroprotective, and neurorestorative properties. Compounds such as PRE-084 or pridopidine (ACR16) are being studied as a potential treatment against cognitive decline associated with neurodegenerative disease, also to include Alzheimer's disease. Here, we performed in vitro experiments using primary neuronal cell cultures from rats to evaluate the abilities of ACR16 and PRE-084 to induce new synapses and spines formation, analyzing the expression of the possible genes and proteins involved.

View Article and Find Full Text PDF

Motor learning induces plasticity in multiple brain regions involving the cerebellum as a crucial player. Synaptic plasticity in the excitatory collaterals to the cerebellar output, the deep cerebellar nuclei (DCN), have recently been shown to be an important part of motor learning. These synapses are composed of climbing fiber (CF) and mossy fiber synapses, with the former conveying unconditioned and the latter conditioned responses in classical conditioning paradigms.

View Article and Find Full Text PDF

To study the aging human brain requires significant resources and time. Thus, mice models of aging can provide insight into changes in brain biological functions at a fraction of the time when compared to humans. This study aims to explore changes in dopamine D and D receptor availability and of gray matter density in striatum during aging in mice and to evaluate whether longitudinal imaging in mice may serve as a model for normal brain aging to complement cross-sectional research in humans.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a lethal and incurable neurodegenerative disease due to the loss of upper and lower motor neurons, which leads to muscle weakness, atrophy, and paralysis. Sigma-1 receptor (σ-1R) is a ligand-operated protein that exhibits pro-survival and anti-apoptotic properties. In addition, mutations in its codifying gene are linked to development of juvenile ALS pointing to an important role in ALS.

View Article and Find Full Text PDF

A majority of lymphomas are derived from B cells and novel treatments are required to treat refractory disease. Neurotransmitters such as serotonin and dopamine influence activation of B cells and the effects of a selective serotonin 1A receptor (5HT1A) antagonist on growth of a number of B cell-derived lymphoma cell lines were investigated. We confirmed the expression of 5HT1A in human lymphoma tissue and in several well-defined experimental cell lines.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal expansion of the polyglutamine tract in the huntingtin protein (HTT). The toxicity of mutant HTT (mHTT) is associated with intermediate mHTT soluble oligomers that subsequently form intranuclear inclusions. Thus, interventions promoting the clearance of soluble mHTT are regarded as neuroprotective.

View Article and Find Full Text PDF

Brain iron accumulation is a common feature shared by several neurodegenerative disorders including Parkinson's disease. However, what produces this accumulation of iron is still unknown. In this study, the 6-hydroxydopamine (6-OHDA) hemi-parkinsonian rat model was used to investigate abnormal iron accumulation in substantia nigra.

View Article and Find Full Text PDF

Articular chondrocytes are slowly dividing cells that tend to lose their cell type-specific phenotype and ability to produce structurally and functionally correct cartilage tissue when cultured. Thus, culture conditions, which enhance the maintenance of chondrocyte phenotype would be very useful for cartilage research. Here we show that Rho-kinase inhibition by Y-27632 under hypoxic conditions efficiently maintains and even enhances chondrocyte-specific extracellular matrix production by chondrocytic cells.

View Article and Find Full Text PDF

Rationale: Dopamine stabilizers have stimulatory actions under low dopamine tone and inhibitory actions under high dopamine tone without eliciting catalepsy. These compounds are dopamine D2 receptor (D2R) antagonists or weak partial agonists and may have pro-mnemonic and neuroprotective effects. The mechanism underlying their stimulatory and neuroprotective actions is unknown but could involve sigma-1R binding.

View Article and Find Full Text PDF

Dopamine (DA) replacement therapy continues to be the gold standard treatment for Parkinson's disease (PD), as it improves key motor symptoms including bradykinesia and gait disturbances. With time, treatment induces side effects in the majority of patients, known as L-DOPA-induced dyskinesia (LID), which are often studied in animals by the use of unilateral, toxin-induced rodent models. In this study, we used the progressive, genetic PD model MitoPark to specifically evaluate bilateral changes in motor behavior following long-term L-DOPA treatment at three different stages of striatal DA depletion.

View Article and Find Full Text PDF

It has been suggested that the favorable side-effect profiles of atypical antipsychotics (e.g. clozapine and amisulpride) are related to their ∼100-fold faster dissociation from dopamine D2 receptors (D2R) compared with typical antipsychotics (e.

View Article and Find Full Text PDF

The anterior and rostral paracapsular intercalated islands (AIC and PIC, respectively) were studied in the context of the amygdaloid modulation of fear/anxiety using horizontal sections. The structural analysis carried out using silver-impregnated specimens revealed that the AIC is composed of tightly packed, medium-sized spiny neurons with distinct dendritic and axonal patterns that send projecting axons to the central nucleus of the amygdala. The AIC occupies a strategic position between the basolateral amygdaloid complex and the caudal limb of the anterior commissure from which it receives fibers en passage and axon terminals.

View Article and Find Full Text PDF

Agonist potency at some neurotransmitter receptors has been shown to be regulated by voltage, a mechanism which has been suggested to play a crucial role in the regulation of neurotransmitter release by inhibitory autoreceptors. Likewise, receptor deactivation rates upon agonist removal have been implicated in autoreceptor function. Using G protein-coupled potassium (GIRK) channel activation in Xenopus oocytes as readout of receptor activity, we have investigated the voltage sensitivities and signaling kinetics of the hH(3)(445) and hH(3)(365) isoforms of the human histamine H₃ receptor, which functions as an inhibitory auto- and heteroreceptor in the nervous system.

View Article and Find Full Text PDF

Striatal adenosine (A)2 -dopamine (D)2 receptor (R) heteromers exist with antagonistic interactions. We have studied these Rs and their interactions during cocaine self-administration and extinction using a 'yoked' protocol to understand the role of motivational mechanisms behind the adaptive observed. In the ventral striatum, a significant increase in the A2A R density was observed in rats that received 'yoked' cocaine during maintenance phase and following its extinction while this significant increase was only observed after extinction from cocaine self-administration.

View Article and Find Full Text PDF

Recent in vitro results suggest that cocaine may exert direct and/or indirect allosteric enhancing actions at dopamine (DA) D(2) receptors (D(2)Rs). In the present paper we tested the hypothesis that cocaine in vivo can enhance the effects of the D(2)-likeR agonist quinpirole in rats by using microdialysis and pharmacological behavioral studies. Furthermore, in vitro D(2)-likeR binding characteristics and Gα(i/o)-protein coupling, in the absence and in the presence of cocaine, have been investigated in rat striatal membranes.

View Article and Find Full Text PDF

The concept of intramembrane receptor-receptor interactions and evidence for their existences were introduced in the beginning of the 1980's, suggesting the existence of receptor heterodimerization. The discovery of GPCR heteromers and the receptor mosaic (higher order oligomers, more than two) has been related to the parallel development and application of a variety of resonance energy transfer techniques such as bioluminescence (BRET), fluorescence (FRET) and sequential energy transfer (SRET). The assembly of interacting GPCRs, heterodimers and receptor mosaic leads to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity.

View Article and Find Full Text PDF

Amygdaloid dopamine D(2) receptors play an important role in the modulation of fear/anxiety. Their topographical distribution within the amygdala is however unclear, and their role in unconditioned fear/anxiety remains largely unknown. The aim of this paper was to study the intra-amygdaloid distribution of D(2) receptors and to ascertain their role in unconditioned anxiety.

View Article and Find Full Text PDF