Publications by authors named "Marcella Russo"

Mal secco is a vascular disease of citrus caused by the mitosporic fungus . Soil containing infected plant material constitutes an inoculum source for root infections. In this study, the soil bacterial and fungal communities of five lemon orchards located in Syracuse Province (Sicily, Italy) affected by mal secco were analyzed.

View Article and Find Full Text PDF

In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P.

View Article and Find Full Text PDF

Here, we report the draft genome sequence of pv. pruni strain PVCT 262.1, isolated from almond () leaves affected by bacterial spots in Italy in 2020.

View Article and Find Full Text PDF

The control of tristeza quick decline (QD) of citrus is based on the use of rootstocks that are tolerant or resistant to the Citrus tristeza virus (CTV), but some of them show bio-agronomic limits. The application of cross-protection (CP) has been insufficiently explored. The present study examined the possibility of QD control by cross-protection (CP) following reports showing the dependence of the CP strategy on the close genetic relationships between the protective and challenging CTV isolates.

View Article and Find Full Text PDF

Objective: To propose a brief parenting program offered in the context of health promotion and evaluate the immediate results relating to use of appropriate parenting practices and quality of parent-child interaction.

Methods: Forty-five parents of school-age children from two non-governmental institutions located in a medium-sized city in the state of Sao Paulo participated in the study. The following assessment tools were used in the pre and post-tests: the Child Behavior Checklist (CBCL), Quality of Family Interaction Scales (EQIFs), and the Brazilian Economic Classification Criteria (CCEB).

View Article and Find Full Text PDF

The protocol described is intended to be used alongside molecular methods in order to reveal the relationship between the genome sequence and the biological properties of a single isolate of Citrus tristeza virus complex (CTV). It enables the phenotypic profile of the isolates to be defined and to infer the associated tristeza diseases (decline, seedling yellows, or stem pitting), to assess their aggressiveness or potential cross protectiveness (if any), and to monitor their movement into the host plants and the transmissibility by aphids.

View Article and Find Full Text PDF

Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity.

View Article and Find Full Text PDF

Two representative isolates of a citrus tristeza virus population in Sicily, SG29 (aggressive) and Bau282 (mild), were sequenced via viral small RNAs (vsRNA) produced in budlings of sweet orange grafted on sour orange. Phylogenetic relationships with Mediterranean and exotic isolates revealed that SG29 clustered within the "VT-Asian" subtype, whereas Bau282 belonged to the cluster T30. The study confirms that molecular data need to be integrated with bio-indexing in order to obtain adequate information for risk assessment.

View Article and Find Full Text PDF

In this study we examined polyhydroxyalkanoate (PHA) synthases phaC1 and phaC2 gene expression in two strains of Pseudomonas corrugata (Pc) grown in a minimum mineral medium with related (oleic acid and octanoate) or unrelated (glucose) carbon sources. Analysis of transcription was performed by Northern blot and conventional reverse transcriptase (RT) polymerase chain reaction (PCR). In addition, we developed a RT-real-time PCR method to quantitatively evaluate phaC1 (Pc) and phaC2 (Pc) gene expression.

View Article and Find Full Text PDF