Publications by authors named "Marcella Petrazzuolo"

It is well known that human keratinocytes produce the anti-microbial peptide β-defensin 2. Its production is enhanced by pathogenic microorganisms or other environmental stressors. In this study, we evaluated the effect of resveratrol, a polyphenol found in several dietary source as grape seed, and its natural precursor, polydatin on heat-stressed human keratinocytes.

View Article and Find Full Text PDF

Human keratinocytes synthesize and secrete non-neuronal acetylcholine, which acts as a local cell signaling molecule, regulating functions like proliferation, cell adhesion, motility, desmosomal cell contact, and glandular activity. The keratinocyte acetylcholine axis is composed of the enzymes mediating acetylcholine synthesis (acetyltransferase) and degradation (acetylcholinesterase), and two classes of acetylcholine receptors. In this study we investigated the effect of captopril, an ACE-inhibitor, on acetylcholinesterase and acetylcholine secretion in human keratinocytes.

View Article and Find Full Text PDF

Artemisinin and its derivatives are well known antimalarial drugs, particularly useful after resistance to traditional antimalarial pharmaceuticals has started to occur in Plasmodium falciparum. In recent years, anticancer activity of artemisinin has been reported both in vitro and in vivo. Artemisinin has inhibitory effects on cancer cell growth and anti-angiogenetic activity.

View Article and Find Full Text PDF

Recent evidence assigns integrins and metalloproteinases (MMPs) an important role in regulating tumor cell progression. Here, we demonstrate that 3-O-methylfunicone (OMF), a secondary metabolite produced by Penicillium pinophilum, affects cell proliferation and motility of breast cancer MCF-7 cells, downregulating alphavbeta5 integrin, and inhibiting MMP-9 secretion. This effect was absent when the non-tumoral MCF-10 cell line was used.

View Article and Find Full Text PDF

Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1).

View Article and Find Full Text PDF